Skip to main content
Log in

A robust confirmable watermarking algorithm for 3D mesh based on manifold harmonics analysis

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Owing to the manifold harmonics analysis, a robust non-blind spectral watermarking algorithm for a two-manifold mesh is presented, which can be confirmed by a trusted third party. Derived from the Laplace–Beltrami operator, a set of orthogonal manifold harmonics basis functions is first adopted to span the spectral space of the underlying three-dimensional (3D) mesh. The minimal number of the basis functions required in the proposed algorithm is also determined, which can effectively accelerate the spectrum computations. Then, to assert ownership and resist 3D mesh forging, a digital signature algorithm is adopted to sign the watermark in the embedding phase and to verify the signature in the extraction phase, which could optimize the robust non-blind spectral watermarking algorithm framework. To improve the robustness of the embedded watermark signature, the input 3D mesh will be segmented into patches. The watermark signature bits are embedded into the low-frequency spectral coefficients of all patches repeatedly and extracted with regard to the corresponding variations of their coefficients. Extensive experimental results demonstrate the efficiency, invisibility, and robustness of the proposed algorithm. Compared with existing watermarking algorithms, our algorithm exhibits better visual quality and is more robust to resist various geometric and connectivity attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schneier, B.: Applied Cryptography: Protocols, Algorithm, and Source Code in C, 2nd edn. Wiley, New York (1996)

    Google Scholar 

  2. Xie, L., Arce, G.R.: A class of authentication digital watermarks for secure multimedia communication. IEEE Trans. Image Process. 10(11), 1754–1764 (2001)

    Article  MATH  Google Scholar 

  3. Wang, K., Lavoue, G., Denis, F., Baskurt, A.: Three-dimensional meshes watermarking: review and attack-centric investigation. In: Information Hiding, pp. 50–64 (2007)

    Chapter  Google Scholar 

  4. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd edn. Morgan Kaufmann, San Francisco (2008)

    Google Scholar 

  5. Wang, K., Lavoue, G., Denis, F., Baskurt, A.: A fragile watermarking scheme for authentication of semi-regular meshes. In: Proc. of EUROGRAPHICS 2008, pp. 5–8 (2008)

    Google Scholar 

  6. Wang, Y.P., Hu, S.M.: A new watermarking method for 3D model based on integral invariant. IEEE Trans. Vis. Comput. Graph. 15(2), 285–295 (2009)

    Article  Google Scholar 

  7. Wang, Y.P., Hu, S.M.: Optimization approach for 3D model watermarking by linear binary programming. Comput. Aided Geom. Des. 27(5), 395–404 (2010)

    Article  MATH  Google Scholar 

  8. Wang, W.B., Zhang, G.Q., Yong, J.H., Gu, H.J.: A numerically stable fragile watermarking scheme for authenticating 3D models. Comput. Aided Des. 40(5), 634–645 (2008)

    Article  Google Scholar 

  9. Ohbuchi, R., Masuda, H., Aono, M.: Watermarking three-dimensional polygonal meshes. In: Proc. of ACM Multimedia 1997, pp. 261–272 (1997)

    Chapter  Google Scholar 

  10. Harte, T., Bors, A.: Watermarking 3D models. In: Proc. of IEEE International Conference on Image Processing, pp. 661–664 (2002)

    Chapter  Google Scholar 

  11. Ohbuchi, R., Masuda, H., Aono, M.: Watermarking three-dimensional polygonal models through geometric and topological modifications. IEEE J. Sel. Areas Commun. 16(4), 551–559 (1998)

    Article  Google Scholar 

  12. Benedens, O.: Two high capacity methods for embedding public watermarks into 3D polygonal models. In: Proc. of Multimedia and Security-workshop at ACM Multimedia, pp. 95–99 (1999)

    Google Scholar 

  13. Benedens, O.: Geometry-based watermarking of 3D models. IEEE Comput. Graph. Appl. 19(1), 46–55 (1999)

    Article  Google Scholar 

  14. Bors, A.G.: Watermarking mesh-based representations of 3D objects using local moments. IEEE Trans. Image Process. 15(3), 687–701 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kanai, S., Date, H., Kishinami, T.: Digital watermarking for 3D polygons using multiresolution wavelet decomposition. In: Proc. of the Sixth IFIP WG 5.2 International Workshop on Geometric Modeling, pp. 296–307 (1998)

    Google Scholar 

  16. Praun, E., Hoppe, H., Finkelstein, A.: Robust mesh watermarking. In: Proc. of SIGGRAPH 1999, pp. 69–76 (1999)

    Google Scholar 

  17. Yin, K., Pan, Z., Shi, J.: Robust mesh watermarking based on multiresolution processing. Comput. Graph. 25(3), 409–420 (2001)

    Article  Google Scholar 

  18. Levy, B., Zhang, H.: Spectral geometry processing. In: Proc. of ACM SIGGRAPH Asia (2009), Course Notes (2009)

    Google Scholar 

  19. Ohbuchi, R., Takahashi, S., Miyazawa, T., Mukaiyama, A.: Watermarking 3D polygonal meshes in the mesh spectral domain. In: Proc. of Graphics Interface 2001, pp. 9–17 (2001)

    Google Scholar 

  20. Ohbuchi, R., Mukaiyama, A., Takahashi, S.: A frequency domain approach to watermarking 3D shapes. Comput. Graph. Forum 21(3), 373–382 (2002)

    Article  Google Scholar 

  21. Wu, H.T., Kobbelt, L.: Efficient spectral watermarking of large meshes with orthogonal basis functions. Vis. Comput. 21(8), 848–857 (2005)

    Article  Google Scholar 

  22. Wang, J., Feng, J., Miao, Y., Pan, H.: A robust public-key non-blind watermarking algorithm for 3D mesh based on radial basis functions. J. Comput.-Aided Des. Comput. Graph. 23(1), 21–31 (2011)

    MATH  Google Scholar 

  23. Liu, Y., Prabhakaran, B., Guo, X.: A robust spectral approach for blind watermarking of manifold surfaces. In: Proc. of ACM Multimedia and Security Workshop, pp. 43–52 (2008)

    Chapter  Google Scholar 

  24. Wang, K., Luo, M., Bors, A.G., Denis, F.: Blind and robust mesh watermarking using manifold harmonics. In: Proc. of the IEEE International Conference on Image Processing, pp. 211–215 (2009)

    Google Scholar 

  25. Luo, M., Wang, K., Bors, A.G., Lavoue, G.: Local patch blind spectral watermarking method for 3D graphics. In: Proc. of the International Workshop on Digital Watermarking, pp. 211–226 (2009)

    Google Scholar 

  26. Vallet, B., Levy, B.: Spectral geometry processing with manifold harmonics. Technical Report, ALICE-2007-001 (2007)

  27. Sorensen, D.C., Lehoucq, R.B., Yang, C., Maschhoff, K.: http://www.caam.rice.edu/software/ARPACK/ (2011)

  28. Toledo, S., Chen, D., Rotkin, V.: http://www.tau.ac.il/~stoledo/taucs/ (2011)

  29. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

    Google Scholar 

  30. Karypis, G., Kumar, V.: MeTiS: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices version 4.0. University of Minnesota, Department of Computer Science (1998)

  31. IEEE P1363-2000: IEEE Standard Specifications for Public-key Cryptography. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  32. FIPS 180-3: Secure hash standard. National Institute of Standards and Technology (2008)

  33. ANSI/X9.62-2005: The elliptic curve digital signature algorithm (ECDSA). Public Key Cryptography for the Financial Services Industry (2005)

  34. Besl, P., McKay, J.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–255 (1992)

    Article  Google Scholar 

  35. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  36. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

  37. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: measuring error between surfaces using the hausdorff distance. In: Proc. of IEEE International Conference on Multimedia and Expo, pp. 705–708 (2002)

    Chapter  Google Scholar 

  38. Corsini, M., Gelasca, E.D., Ebrahimi, T., Barni, M.: Watermarked 3D mesh quality assessment. IEEE Trans. Multimed. 9(2), 247–256 (2007)

    Article  Google Scholar 

  39. Lavoue, G., Gelasca, E.D., Dupont, F., Baskurt, A., Ebrahimi, T.: Perceptually driven 3D distance metrics with application to watermarking. In: Proc. of SPIE Applications of Digital Image Processing, pp. 6312, 63120L.1-63120L. 12 (2006)

    Google Scholar 

  40. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as “Shape-DNA” of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  41. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proc. of SIGGRAPH 1997, pp. 209–216 (1997)

    Chapter  Google Scholar 

  42. http://meshlab.sourceforge.net/ (2011)

  43. http://www.rapidform.com/ (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieqing Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Feng, J. & Miao, Y. A robust confirmable watermarking algorithm for 3D mesh based on manifold harmonics analysis. Vis Comput 28, 1049–1062 (2012). https://doi.org/10.1007/s00371-011-0650-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0650-3

Keywords

Navigation