Skip to main content
Log in

Asymptotics for Products of Characteristic Polynomials in Classical β-Ensembles

  • Published:
Constructive Approximation Aims and scope

Abstract

We study the local properties of eigenvalues for the Hermite (Gaussian), Laguerre (Chiral), and Jacobi β-ensembles of N×N random matrices. More specifically, we calculate scaling limits of the expectation value of products of characteristic polynomials as N→∞. In the bulk of the spectrum of each β-ensemble, the same scaling limit is found to be \(e^{p_{1}}{}_{1}F_{1}\), whose exact expansion in terms of Jack polynomials is well known. The scaling limit at the soft edge of the spectrum for the Hermite and Laguerre β-ensembles is shown to be a multivariate Airy function, which is defined as a generalized Kontsevich integral. As corollaries, when β is even, scaling limits of the k-point correlation functions for the three ensembles are obtained. The asymptotics of the multivariate Airy function for large and small arguments is also given. All the asymptotic results rely on a generalization of Watson’s lemma and the steepest descent method for integrals of Selberg type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Another method for treating the absolute value of integral (1.11) was proposed in [14]. Its first step consists in changing the n contours \(\mathcal{C}\) into a series of n distinct contours, \(\mathcal{C}_{1}\) for variable t 1, \(\mathcal{C}_{2}\) for variable t 2, and so on, so that |Δ(t)|ν can be written as Δ(t)ν without affecting the value of the integral. For instance, if \(\mathcal{C}=\mathbb{R}\), then the contours \(\mathcal{C}_{1},\ldots, \mathcal{C}_{n}\) can be chosen such that they all start at −∞ and comply with ℜ(t n )≤⋯≤ℜ(t 1)≤∞. Although with this method one easily predicts the correct asymptotic expansions, we prefer not to use it because the nature of the contours \(\mathcal{C}_{j}\) depends on the specific integrals that must be evaluated, and because treating rigorously a succession of n parametric integrals is much harder than what we use here.

  2. Following our notation, the polynomial kernel K N (x,y) of the unitary ensembles is given by \(\frac{\varphi _{N}(x)\varphi_{N-1}(y)- \varphi_{N}(y)\varphi_{N-1}(x)}{x-y}\) if n=m=1 and β=2.

  3. By summing up all the n equations in (5.3), one easily shows that the multivariate Airy function is one possible solution of the following (single) PDE: D 0 F=p 1(s)F, where D 0 is the differential operators defined in (2.2). This PDE was first given [13, Eq. (5.17)] as an equation satisfied by the Airy function defined in (1.12).

References

  1. Akemann, G., Fyodorov, Y.V.: Universal random matrix correlations of ratios of characteristic polynomials at the spectral edges. Nucl. Phys. B 664, 457–476 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Aomoto, K.: Scaling limit formula for 2-point correlation function of random matrices. Adv. Stud. Pure Math. 16, 1–15 (1988). Conformal field theory and solvable lattice models

    MathSciNet  Google Scholar 

  4. Baker, T.H., Forrester, P.J.: The Calogero-Sutherland model and generalized classical polynomials. Commun. Math. Phys. 188, 175–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polynomials of random Hermitian matrices. J. Math. Phys. 44, 3657–3670 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergère, M., Eynard, B., Marchal, O., Prats-Ferrer, A.: Loop equations and topological recursion for the arbitrary-β two-matrix model. J. High Energy Phys. 03, 098 (2012). arXiv:1106.0332

    Article  Google Scholar 

  7. Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. Commun. Pure Appl. Math. 59, 161–253 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgade, P., Erdös, L., Yau, H.-T.: Universality of general β-ensembles (2012). arXiv:1104.2272v5, 48 pp.

  9. Bourgade, P., Erdös, L., Yau, H.-T.: Bulk universality of general β-ensembles with non-convex potential (2012). arXiv:1201.2283v2, 22 pp.

  10. Breitung, K., Hohenbichler, M.: Asymptotic approximations for multivariate integrals with an application to multinormal probabilities. J. Multivar. Anal. 30, 80–97 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214, 111–135 (2000)

    Article  MATH  Google Scholar 

  12. Chekhov, L.O., Eynard, B., Marchal, O.: Topological expansion of the β-ensemble model and quantum algebraic geometry in the sectorwise approach. Theor. Math. Phys. 166, 141–185 (2011)

    Article  MATH  Google Scholar 

  13. Desrosiers, P.: Duality in random matrix ensembles for all β. Nucl. Phys. B 817, 224–251 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Desrosiers, P., Forrester, P.J.: Hermite and Laguerre β-ensembles: asymptotic corrections to the eigenvalue density. Nucl. Phys. B 43, 307–332 (2006)

    Article  MathSciNet  Google Scholar 

  15. Desrosiers, P., Liu, D.-Z.: Selberg integrals, super hypergeometric functions and applications to β-ensembles of random matrices. arXiv:1109.4659, 43 pages

  16. Dumaz, L., Virág, B.: The right tail exponent of the Tracy-Widom-beta distribution (2011). arXiv:1102.4818, 24 pp.

  17. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dumitriu, I., Edelman, A.: Eigenvalues of Hermite and Laguerre ensembles: large beta asymptotics. Ann. Inst. Henri Poincaré Probab. Stat. 41, 1083–1099 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dumitriu, I., Edelman, A.: Global spectrum fluctuations for the β-Hermite and β-Laguerre ensembles via matrix models. J. Math. Phys. 47, 063302 (2006)

    Article  MathSciNet  Google Scholar 

  20. Dumitriu, I., Koev, P.: Distributions of the extreme eigenvalues of beta-Jacobi random matrices. SIAM J. Matrix Anal. Appl. 30, 1–6 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Edelman, A., Rao, N.R.: Random matrix theory. Acta Numer. 14, 233–297 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Edelman, A., Sutton, B.D.: From random matrices to stochastic operators. J. Stat. Phys. 127, 1121–1165 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Forrester, P.J.: Selberg correlation integrals and the 1/r 2quantum many-body system. Nucl. Phys. B 388, 671–699 (1992)

    Article  MathSciNet  Google Scholar 

  24. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Forrester, P.J.: Exact results and universal asymptotics in the Laguerre random matrix ensemble. J. Math. Phys. 35, 2539–2551 (1993)

    Article  MathSciNet  Google Scholar 

  26. Forrester, P.J.: Beta random matrix ensembles. In: Bai, Z., Chen, Y., Liang, Y.-C. (eds.) Random Matrix Theory and Its Applications. Lecture Notes Series, IMS, NUS, vol. 18, pp. 27–68. World Scientific, Singapore (2009)

    Chapter  Google Scholar 

  27. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs, vol. 34. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  28. Forrester, P.J.: The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source. arXiv:1203.5838v1, 21 pages

  29. Forrester, P.J., Sorrell, M.J.: Asymptotics of spacing distributions 50 years later. arXiv:1204.3225v2, 21 pages

  30. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2007)

    MATH  Google Scholar 

  31. Holcomb, D., Moreno Flores, G.R.: Edge scaling of the β-Jacobi ensemble. J. Stat. Phys. 149, 1136–1160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hsu, L.C.: A theorem on the asymptotic behavior of a multiple integral. Duke Math. J. 15, 623–632 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  33. Jacquot, S., Valkó, B.: Bulk scaling limit of the Laguerre ensemble. Electron. J. Probab. 16, 314–346 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kadell, K.W.J.: The Selberg-Jack symmetric functions. Adv. Math. 130, 33–102 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kaneko, J.: Selberg integrals and hypergeometric functions associated with Jack polynomials. SIAM J. Math. Anal. 24, 1086–1110 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kuramoto, Y., Kato, Y.: Dynamics of One-Dimensional Quantum Systems. CUP, Cambridge (2009)

    Book  MATH  Google Scholar 

  37. Killip, R.: Gaussian fluctuations for β ensembles. Int. Math. Res. Not. 2008, rnn007 (2008)

    MathSciNet  Google Scholar 

  38. Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 2004, 2665–2701 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Keating, J.P., Snaith, N.C.: Random matrix theory and ζ(1/2+it). Commun. Math. Phys. 214(1), 57–89 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Koev, P., Edelman, A.: The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comput. 75, 833–846 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  42. Korányi, A.: Hua-type integrals, hypergeometric functions and symmetric polynomials. In: International Symposium in Memory of Hua Loo Keng, Beijing, 1988, vol. II, pp. 169–180. Springer, Berlin (1991)

    Google Scholar 

  43. Kösters, H.: Asymptotics of characteristic polynomials of Wigner matrices at the edge of the spectrum. Asymptot. Anal. 69(3–4), 233–248 (2010)

    MATH  MathSciNet  Google Scholar 

  44. Le Caër, G., Male, C., Delannay, R.: Nearest-neighbour spacing distributions of the β-Hermite. Physica A 383, 190–208 (2007)

    Article  Google Scholar 

  45. Liu, D.-Z.: PhD thesis, Peking University (2010) (in Chinese)

  46. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  47. Matsumoto, S.: Moments of characteristic polynomials for compact symmetric spaces and Jack polynomials. J. Phys. A 40, 13567–13586 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Matsumoto, S.: Jack deformations of Plancherel measures and traceless Gaussian random matrices. Electron. J. Comb. 15, R149 (2008). 18 pages

    Google Scholar 

  49. Matsumoto, S.: Jucys-Murphy elements, orthogonal matrix integrals, and Jack measures. Ramanujan J. 26, 69–107 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  51. Mironov, A., Morozov, A., Morozov, A.: Conformal blocks and generalized Selberg integrals. Nucl. Phys. B 843, 534–557 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Nagao, T., Forrester, P.J.: Asymptotic correlations at the spectrum edge of random matrices. Nucl. Phys. B 435, 401–420 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  53. Olver, F.W.J.: Asymptotics and Special Functions. AKP Classics. A K Peters Ltd., Wellesley (1997). Reprint of the 1974 original, New York: Academic Press

    MATH  Google Scholar 

  54. Ramírez, J.A., Rider, B.: Diffusion at the random matrix hard edge. Commun. Math. Phys. 288, 887–906 (2009)

    Article  MATH  Google Scholar 

  55. Ramírez, J.A., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24, 919–944 (2011)

    Article  MATH  Google Scholar 

  56. Ramírez, J.A., Rider, B., Zeitouni, O.: Hard edge tail asymptotics. Electron. J. Probab. 16, 741–752 (2011)

    MATH  Google Scholar 

  57. Su, Z.G.: On the second-order correlation of characteristic polynomials of Hermite β ensembles. Stat. Probab. Lett. 80, 1500–1507 (2010)

    Article  MATH  Google Scholar 

  58. Sułkowski, P.: Matrix models for β-ensembles from Nekrasov partition functions. J. High Energy Phys. 063.1–063.36 (2010)

    Google Scholar 

  59. Stanley, R.P.: Some combinatorial properties of Jack symmetric functions. Adv. Math. 77, 76–115 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  60. Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177, 463–508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  61. Valkó, B., Virág, B.: Large gaps between random eigenvalues. Ann. Probab. 38, 1263–1279 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  62. Yan, Z.: A class of generalized hypergeometric functions in several variables. Can. J. Math. 44, 1317–1338 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work of P.D. was supported by FONDECYT grant #1090034 and by CONICYT through the Anillo de Investigación ACT56. The work of D.-Z.L. was supported by FONDECYT grant #3110108 and partially by the National Natural Science Foundation of China (Grant No. 11171005 and 11301499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Desrosiers.

Additional information

Communicated by Arno Kuijlaars.

Appendix:  Notation and Constants

Appendix:  Notation and Constants

Most of the constants used in the article can be derived from Selberg’s integrals [27, 50]:

$$\begin{aligned} S_{N}(\lambda_{1},\lambda _{2},\lambda_3) :=& \int_{[0,1]^N}\prod _{i=1}^N x_i^{\lambda _1}(1-x_i)^{\lambda_2} \prod_{1\leq k<j \leq N}|x_k-x_j|^{2\lambda _3} \,d^{N}x \\ =&\prod_{j=0}^{N-1} \frac{\varGamma(1+\lambda_3+j\lambda_3) \varGamma(1+\lambda _{1}+j\lambda_3) \varGamma(1+\lambda_{2}+j\lambda_3)}{ \varGamma(1+\lambda_3)\varGamma(2+\lambda_{1}+\lambda _{2}+(N+j-1)\lambda_3)}. \end{aligned}$$
(A.1)

In particular, one readily shows that

$$ W_{\lambda_{1}, \beta ,N}=(2/\beta)^{(1+\lambda_{1})N+\beta N(N-1)/2}\prod _{j=0}^{N-1} \frac{\varGamma(1+\beta/2+j\beta/2) \varGamma(1+\lambda_{1}+j\beta/2)}{ \varGamma(1+\beta/2)}, $$
(A.2)

and

$$ G_{\beta,N}=\beta^{-N/2-\beta N(N-1)/4}(2 \pi)^{N/2}\prod_{j=0}^{N-1} \frac{\varGamma(1+\beta/2+j\beta/2)}{ \varGamma(1+\beta/2)}. $$
(A.3)

For the Gaussian case, it is often more convenient to use the following integral:

$$ \int_{\mathbb{R}^n}\prod _{i=1}^n e^{-zx_i^2/2}\prod _{1\leq k<j \leq n}|x_k-x_j|^{\beta}\, d^{n}x=\frac{1}{z^{(n+\beta n(n-1)/2)/2}}\varGamma_{\beta,n},\qquad \textrm{Re} \{z\}>0, $$
(A.4)

where

$$ \varGamma_{\beta,n}=(2\pi)^{n/2}\prod _{j=1}^n\frac{\varGamma(1+j\beta /2)}{\varGamma(1+\beta/2)}. $$
(A.5)

The Morris normalization constant is

$$ M_n(a,b, \alpha)= \prod_{j=0}^{n-1} \frac{\varGamma(1+ \alpha+j \alpha) \varGamma(1+a+b+j \alpha)}{ \varGamma(1+ \alpha)\varGamma(1+a+j \alpha)\varGamma(1+b+j \alpha)}. $$
(A.6)

The constants for the soft edge are

$$ \varPhi_{N,n}= \begin{cases} N^{\beta' n(n-1)/12+n/6}\exp\{ -n N(1+\ln2-\ln N-2i\pi)/2\} &\mathrm{H}\beta\mathrm{E},\\ 2^{-\beta' n(n-1)/6-\beta' n/2+2n/3} N^{\beta' n(n-1)/12+\beta ' n \lambda_1/4+ n/6} \\ \quad {}\times \exp\{ -n N(1-\ln N-i\pi)\}&\mathrm{L}\beta\mathrm{E}. \end{cases} $$
(A.7)

In the bulk with n=2m, the constants are

$$ \varPsi_{N,2m}= \begin{cases}(\pi\rho)^{\beta' m(m+1)/2-m} N^{\beta' m^{2}/2}\exp\{ -m N(1+\ln2-\ln N)\} &\mathrm{H}\beta\mathrm{E},\\ (\pi\rho/2)^{\beta' m(m+1)/2-m} N^{\beta' m(m+\lambda _1)/2}\exp\{ -2m N(1-\ln N)\} &\mathrm{L}\beta\mathrm{E},\\ (\pi\rho)^{\beta' m(m+1)/2-m} N^{\beta' m^{2}/2}2^{-\beta' m^{2}/2-\beta' m(\lambda_{1}+\lambda_{2}+1)+2m(1-2N)} & \mathrm{J}\beta\mathrm{E}, \end{cases} $$
(A.8)

where \(\rho=\frac{2}{\pi}\sqrt{1-u^{2}}\), \(\frac{2}{\pi}\sqrt {\frac{1-u}{u}}\), \(\frac{1}{\pi}\frac{1}{\sqrt{u(1-u)}}\), respectively correspond to the HβE, LβE, and JβE.

The constants for the bulk with n=2m−1 are

$$ \varPsi_{N,2m-1}^{(l)}= \begin{cases} \binom{2m-1}{m} \varGamma_{\beta',m-1} \varGamma_{\beta ',m}(\varGamma_{\beta',2m-1})^{-1}(\pi\rho)^{\beta'(m^{2}-1)/2-(2m-1)/2} \\ \quad {}\times N^{\beta' m(m-1)/2} \exp\{-(2m-1) N(1+\ln2-\ln N)/2\} \\ \quad {}\times (\sqrt{N/2})^{-(2m-1)l} (2i\sqrt{\pi\rho/2}) & \mathrm{H}\beta\mathrm{E}, \\ \binom{2m-1}{m} \varGamma_{\beta',m-1} \varGamma_{\beta',m}(\varGamma_{\beta',2m-1})^{-1}(\pi\rho/2)^{\beta'(m^{2}-1)/2- m+1} \\ \quad {}\times \sqrt {2}(2\sqrt{u})^{-\beta'/2+1} N^{\beta'm(m-1)/2+\beta' (2m-1)\lambda_1/4} \\ \quad {}\times \exp\{ -(2m-1) N(1-\ln N-i\pi )\} (-N)^{-(2m-1)l} & \mathrm{L}\beta\mathrm{E}, \\ \binom{2m-1}{m} \varGamma_{\beta',m-1} \varGamma_{\beta',m}(\varGamma_{\beta',2m-1})^{-1}(\pi\rho)^{\beta'(m-1)^{2}/2+(\beta'-2m+1)/2} \\ \quad {}\times \sqrt{2}(2\sqrt{u})^{-\beta'/2+1} N^{\beta' m(m-1)/2} i^{-1}(-1)^{n(N-1)} \\ \quad {}\times 2^{-\beta' m(m+1)/2-\beta' (2m-1)(\lambda_{1}+\lambda_{2})/2+(2m-1)(1-2N+2l)+1} \\ \quad {}\times (1-u)^{nl/2} \sqrt[4]{u} & \mathrm{J}\beta\mathrm{E}. \end{cases} $$
(A.9)

For the hard edge, the constants are

$$ \xi_{N,n}= \begin{cases} \frac{W_{\lambda_1+n, \beta,N}}{W_{\lambda_1, \beta ,N}} &\mathrm{L}\beta\mathrm{E},\\ \frac{S_N(\lambda_1+n,\lambda_2;\beta/2)}{S_N(\lambda _1,\lambda_2;\beta/2)} & \mathrm{J}\beta\mathrm{E}. \end{cases} $$
(A.10)

Finally, the universal coefficients are

$$\begin{aligned} & a_{k}(\beta)= (\beta/2)^{(\beta k+1)k}\bigl(\varGamma (1+\beta/2) \bigr)^{k} \prod_{j=1}^{2k} \frac{(\varGamma(1+2/\beta))^{\beta /2}}{\varGamma(1+\beta j/2) } , \end{aligned}$$
(A.11)
$$\begin{aligned} & b_{k}(\beta)= (\beta/2)^{\beta k(k-1)/2}\bigl(\varGamma (1+\beta/2) \bigr)^{k} \prod_{j=0}^{k-1} \frac{\varGamma(1+\beta j/2)}{\varGamma (1+\beta(k+j)/2)} , \end{aligned}$$
(A.12)

and

$$ \gamma_{m}\bigl(\beta'\bigr)=\binom{2m}{m}\prod _{j=1}^m\frac{\varGamma(1+\beta'j/2)}{\varGamma(1+\beta' (m+j)/2)}. $$
(A.13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desrosiers, P., Liu, DZ. Asymptotics for Products of Characteristic Polynomials in Classical β-Ensembles. Constr Approx 39, 273–322 (2014). https://doi.org/10.1007/s00365-013-9206-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-013-9206-2

Keywords

Mathematics Subject Classification (2010)

Navigation