Constructive Approximation

, Volume 23, Issue 2, pp 197–210

Positive Gegenbauer Polynomial Sums and Applications to Starlike Functions

Authors

    • Department of Mathematics and Statistics, The University of Cyprus, P.O. Box 20537, 1678 Nicosia
    • Mathematisches Institut, Universitat Wurzburg, 97074 Wurzburg
Article

DOI: 10.1007/s00365-004-0584-3

Cite this article as:
Koumandos, S. & Ruscheweyh, S. Constr Approx (2006) 23: 197. doi:10.1007/s00365-004-0584-3

Abstract

Let $s_n(f,z):=\sum_{k=0}^{n}a_kz^k$ be the $n$th partial sum of $f(z)=\sum_{k=0}^{\infty{}}a_kz^k$. We show that $\RE s_n(f/z,z)>0$ holds for all\ $z\in\D,\ n\in\N$, and all starlike functions $f$ of order $\lambda$ iff $\lambda_0\leq\lambda<1$ where $\lambda_0=0.654222...$ is the unique solution $\lambda\in(\frac{1}{2},1)$ of the equation $\int_{0}^{3\pi/2}t^{1-2\lambda}\cos t \,dt=0$. Here $\D$ denotes the unit disk in the complex plane $\C$. This result is the best possible with respect to $\lambda_0$. In particular, it shows that for the Gegenbauer polynomials $C_{n}^{\mu}(x)$ we have $\sum_{k=0}^n C_{k}^{\mu}(x)\cos k \theta>0$ for all $n\in\N,\ x\in[-1,1]$, and $0<\mu\leq\mu_0:=1-\lambda_0=0.345778...$. This result complements an inequality of Brown, Wang, and Wilson (1993) and extends a result of Ruscheweyh and Salinas (2000).

Positive cosine sumsTrigonometric inequalitiesGegenbauer polynomialsStarlike functions

Copyright information

© Springer 2004