, Volume 54, Issue 3, pp 645-683
Date: 24 May 2012

Random rounded integer-valued autoregressive conditional heteroskedastic process

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The statistical literature on the analysis of discrete variate time series has concentrated mainly on parametric models, that is the conditional probability mass function is assumed to belong to a parametric family. Generally, these parametric models impose strong assumptions on the relationship between the conditional mean and variance. To generalize these implausible assumptions, this paper instead considers a more realistic semiparametric model, called random rounded integer-valued autoregressive conditional heteroskedastic (RRINARCH) model, where there are essentially no assumptions on the relationship between the conditional mean and variance. The new model has several advantages: (a) it provides a coherent semiparametric framework for discrete variate time series, in which the conditional mean and variance can be modeled separately; (b) it allows negative values both for the series and its autocorrelation function; (c) its autocorrelation structure is the same as that of a standard autoregressive (AR) process; (d) standard software for its estimation is directly applicable. For the new model, conditions for stationarity, ergodicity and the existence of moments are established and the consistency and asymptotic normality of the conditional least squares estimator are proved. Simulation experiments are carried out to assess the performance of the model. The analyses of real data sets illustrate the flexibility and usefulness of the RRINARCH model for obtaining more realistic forecast means and variances.