Statistical Papers

, Volume 52, Issue 1, pp 87–109

Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models

Authors

Regular Article

DOI: 10.1007/s00362-009-0205-0

Cite this article as:
Scott, S.L. Stat Papers (2011) 52: 87. doi:10.1007/s00362-009-0205-0

Abstract

This article describes a convenient method of selecting Metropolis– Hastings proposal distributions for multinomial logit models. There are two key ideas involved. The first is that multinomial logit models have a latent variable representation similar to that exploited by Albert and Chib (J Am Stat Assoc 88:669–679, 1993) for probit regression. Augmenting the latent variables replaces the multinomial logit likelihood function with the complete data likelihood for a linear model with extreme value errors. While no conjugate prior is available for this model, a least squares estimate of the parameters is easily obtained. The asymptotic sampling distribution of the least squares estimate is Gaussian with known variance. The second key idea in this paper is to generate a Metropolis–Hastings proposal distribution by conditioning on the estimator instead of the full data set. The resulting sampler has many of the benefits of so-called tailored or approximation Metropolis–Hastings samplers. However, because the proposal distributions are available in closed form they can be implemented without numerical methods for exploring the posterior distribution. The algorithm converges geometrically ergodically, its computational burden is minor, and it requires minimal user input. Improvements to the sampler’s mixing rate are investigated. The algorithm is also applied to partial credit models describing ordinal item response data from the 1998 National Assessment of Educational Progress. Its application to hierarchical models and Poisson regression are briefly discussed.

Keywords

Multinomial Poisson transformationDiscrete choice modelPartial credit modelMarkov chain Monte CarloGibbs samplerMetropolis–HastingsLogistic regressionPolytomousPolychotomous

Copyright information

© Springer-Verlag 2009