Bauwens, L. and Lubrano, M., (1998). Bayesian inference on GARCH models using Gibbs sampler,

*Econometrics Journal*
**1**: 23–46.

CrossRefBollerslev, T., (1986). A generalized autoregressive conditional heteroskedasticity,

*Journal of Econometrics*
**31**: 307–327.

MATHMathSciNetCrossRefBollerslev, T., Engle, R. and Nelson, D., (1994). ARCH models, *in* R. Engle and D. McFadden (eds), *Handbook of Econometrics*, Vol. 4, Elsevier Science B. V., Amsterdam.

Carlin, B. and Louis, T., (1996).

*Bayes and Empirical Bayes Methods for Data Analysis*, Chapman&Hall, London.

MATHChib, S., (1995). Marginal likelihood from the Gibbs output,

*Journal of the American Statistical Association*
**90** (432): 1313–1321.

MATHMathSciNetCrossRefChib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis- Hastings output,

*Journal of the American Statistical Association*
**96**(453): 270–281.

MATHMathSciNetCrossRefFrühwirth-Schnatter, S., (1995). Bayesian model discrimination and Bayes factor for linear Gaussian state space models,

*Journal of the Royal Statistical Society, series B*
**57**: 237–246.

MATHFrühwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques,

*The Econometrics Journal*
**7**: 143–167.

MATHMathSciNetCrossRefGelfand, A. and Dey, D., (1994). Bayesian model choice: Asymptotic and exact calculations,

*Journal of the Royal Statistical Society, Ser. B*
**56**: 501–514.

MATHMathSciNetGelfand, A. and Smith, A., (1990). Sampling-based approaches to calculating marginal densities,

*Journal of the American Statistical Association*
**85**: 398–409.

MATHMathSciNetCrossRefGelman, A. and Rubin, D., (1992). Inference from iterative simulation using multiple sequences (with discussion), *Statistical Science*
**7**: 457–511.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, *in* J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), *Bayesian Statistics*, Vol. 4, Oxford University Press, pp. 169–193.

Geweke, J., (1993). Bayesian treatment of the independent Student-t linear model, *Journal of Applied Econometrics*
**8**: 19–40.

Geweke, J. (1995). Bayesian comparison of econometric models. Working Papers 532, Federal Reserve Bank of Minneapolis.

Green, P., (1995). Reversible jump MCMC computation and Bayesian model determination,

*Biometrika*
**82**: 711–732.

MATHMathSciNetCrossRefHastings, W., (1970). Monte Carlo sampling methods using Markov chains and their applications,

*Biometrika*
**57**: 97–109.

MATHCrossRefJaffreys, H., (1961). *Theory of Probability, 3rd edition*, Oxford University Press, Oxford.

Kass, R. and Raftery, A., (1995). Bayes factor,

*Journal of the American Statistical Association*
**90**: 773–792.

MATHCrossRefKaufmann, S. and Frühwirth-Schnatter, S. (2002). Bayesian analysis of switching ARCH models,

*Journal of Time Series Analysis*
**23**(4): 425–458.

MATHCrossRefKim, S., Shephard, N. and Chib, S., (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models,

*Review of Economic Studies*
**65**: 361–393.

MATHCrossRefKleibergen, F. and van Dijk, H., (1993). Non-stationarity in GARCH models: a Bayesian analysis, *Journal of Applied Econometrics*
**8**: 41–61.

Lavine, M. and Scherrish, M., (1999). Bayes factors: What they are and what they are not,

*The American Statistician*
**53**: 119–122.

MathSciNetCrossRefMeng, X. and Wong, W., (1996). Simulating ratios of normalizing constants via a simple identity,

*Statistical Sinica*
**6**: 831–860.

MATHMathSciNetMiazhynskaia, T., Frühwirth-Schnatter, S. and Dorffner, G. (2004). Bayesian testing for non-linearity in volatility modeling, *Technical report*, Austrian Research Institute for Artificial Intelegence.

Müller, P. and Pole, A., (1998). Monte Carlo posterior integration in GARCH models,

*Sankhya—The Indian Journal of Statistics*
**60**: 127–144.

MATHNakatsuma, T. (2000). Bayesian analysis of ARMA-GARCH models: a Markov chain sampling approach,

*Journal of Econometrics*
**95**: 57–69.

MATHMathSciNetCrossRefNewton, M. and Raftery, A., (1994). Approximate Bayesian inference by the weighted likelihood bootstrap,

*Journal of Royal Statistical Society, Ser. B*
**56**: 1–48.

MATHMathSciNetRaftery, A. and Lewis, S. (1992). How many iterations in the Gibbs sampler, *in* J. Bernardo, J. Berger, A. Dawid and A. Smith (eds), *Bayesian Statistics*, Vol. 4, Oxford University Press, pp. 763–773.

Schwarz, G., (1978). Estimating the dimension of a model,

*The Annals of Statistics*
**6**: 461–464.

MATHMathSciNetShephard, N., (1996). Statistical aspects of ARCH and stochastic volatility, *in* D. Cox, D. V. Hinkley and O. E. Barndorff-Nielsen (eds), *Time Series Models in Econometrics, Finance and Other Fields*, London: Chapman & Hall, pp. 1–67.

Tierney, L., (1994). Markov chains for exploring posterior distributions,

*Annals of Statistics*
**21**: 1701–1762.

MathSciNetVrontos, I., Dellaportas, P. and Politis, D. (2000). Full Bayesian inference for GARCH and EGARCH models,

*Journal of Business & Economic Statistic*
**18**(2):187–198.

CrossRefWasserman, L. (1997). Bayesian model selection and model averaging, *Technical report*, Statistics Department, Carnegie Mellon University.