Journal of Comparative Physiology B

, Volume 171, Issue 4, pp 293–301

Differential catabolism of muscle protein in Garden Warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration

  • U. Bauchinger
  • H. Biebach
Original Paper

DOI: 10.1007/s003600100176

Cite this article as:
Bauchinger, U. & Biebach, H. J Comp Physiol B (2001) 171: 293. doi:10.1007/s003600100176

Abstract.

Samples of flight and leg muscle tissue were taken from migratory garden warblers at three different stages of migration: (1) pre-flight: when birds face an extended flight phase within the next few days, (2) post-flight: when they have just completed an extended flight phase, and (3) recovery: when they are at the end of a stop-over period following an extended flight phase. The changes in body mass are closely related to the changes in flight (P<0.001) and leg muscle mass (P<0.001), suggesting that the skeletal muscles are involved in the protein metabolism associated with migratory flight. From pre- to post-flight, the flight and the leg muscle masses decrease by about 22%, but are restored to about 12% above the pre-flight masses during the recovery period. Biochemical analyses show that following flight a selective reduction occurred in the myofibrillar (contractile) component of the flight muscle (P<0.01). As this selective reduction accounts only for a minor part of the muscle mass changes, sarcoplasmic (non-contractile) and myofibrillar proteins of both the flight and leg muscle act as a protein source during long-distance migration. As a loss of leg muscle mass is additionally observed besides the loss in flight muscle mass, mass change seems not to be strictly associated with the mechanical power output requirements during flight. Whereas the specific content of sarcoplasmic proteins in the flight muscle is nearly twice as high as that in the leg muscle (P<0.001), the specific content of myofibrillar proteins differs only slightly (P<0.05), being comparably low in both muscles. The ratio of non-contractile to contractile proteins in the flight muscle is one of the highest observed in muscles of a vertebrate.

Passerine bird Muscle composition Sarcoplasmic and myofibrillar protein Selective protein degradation 

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • U. Bauchinger
    • 1
  • H. Biebach
    • 1
  1. 1.Research Centre for Ornithology of the Max-Planck-Society, Von-der Tann-Strasse 7, 82346 Andechs, Germany

Personalised recommendations