, Volume 181, Issue 6, pp 841-849
Date: 12 Mar 2011

Unanticipated consequences of logarithmic transformation in bivariate allometry

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Parameters in the two-parameter allometric equation are commonly estimated by fitting a straight line to logarithmic transformations of the original data and by back-transforming the resulting model to the arithmetic scale. However, log transformation distorts the relationship between the predictor and response variables, and this distortion may be sufficient to lead unsuspecting investigators to analyze data that actually are unsuited for allometric research. Two data sets from the current literature are re-examined here to illustrate instances in which log transformation caused ugly data to look deceptively good. One of the investigations focused on the scaling of metabolism to body mass in evolutionary transitions from prokaryotic to protistan to metazoan levels of organization whereas the other addressed the scaling of intestines to body size in rodents. In both instances investigators were led to conclusions that are not supported by the original data. Problems of the sort described here can readily be avoided simply by performing preliminary graphical analysis of observations expressed in the original units and by validating the final model in the arithmetic domain.

Communicated by I.D. Hume.