Skip to main content
Log in

Precocious hearing in harbour porpoise neonates

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Hearing is the primary sensory modality for toothed whales, but it is not known at which age it is fully developed. For newborn calves, hearing could fill an important function in maintaining contact with the mother and to develop echolocation skills. We non-invasively measured the auditory brainstem response (ABR) in two neonate (age 1–4 days) and three adult harbour porpoises (Phocoena phocoena). The stimuli consisted of clicks centred at 130 kHz, which is within the frequency band used for echolocation and communication in this species. The temporal pattern of the neonate ABRs was indistinguishable to the adult ones. There were no significant differences between calves and adults regarding hearing thresholds and ABR latencies. The ABR amplitudes were up to more than an order of magnitude larger in newborns than in adults, most likely due to the neonates’ smaller size. These results indicate that hearing is fully developed within a day after birth, which suggests that harbour porpoise neonates have the earliest hearing development of any mammal studied so far. This may be explained by the evolutionary pressures imposed by the aquatic environment for a rapid development of the key sensory system in harbour porpoises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitkin LM, Moore DR (1975) Inferior colliculus. II. Development of tuning characteristics and tonotopic organization in central nucleus of the neonatal cat. J Neurophysiol 38(5):1208–1216

    CAS  PubMed  Google Scholar 

  • Au WWL, Hastings MC (2008) Principles of marine bioacoustics. Chapman Hall, New York

    Book  Google Scholar 

  • Blatchley BJ, Cooper WA, Coleman JR (1987) Development of auditory brainstem response to tone pip stimuli in the rat. Dev. Brain Res 32:75–84

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates, New York

    Google Scholar 

  • Brandt C, Malmkvist J, Nielsen RL, Brande-Lavridsen N, Surlykke A (2013) Development of vocalization and hearing in American mink (Neovison, vison). J Exp Biol 216:3542–3550

    Article  PubMed  Google Scholar 

  • Clausen KT, Wahlberg M, Beedholm K, Madsen PT (2010) Click communication in harbour porpoises Phocoena phocoena. Bioacoustics 20:1–28

    Article  Google Scholar 

  • Corey DP, Breakefield XO (1994) Transcription factors in inner ear development. Proc Natl Acad Sci USA 91:433–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derrickson EM (1992) Comparative reproductive strategies of altricial and precocial eutherian mammals. Funct Ecol 6:57–65

    Article  Google Scholar 

  • Dum N (1984) Postnatal development of the auditory evoked brainstem potentials in the Guinea pig. Acta Oto-laryngol 97:63–68

    Article  CAS  Google Scholar 

  • Eggermont JJ, Moore JK (2012) Morphological and functional development of the auditory nervous system. In: Werner L, Fay RR, Popper AN (eds) Springer handbook of auditory research, Vo. 42, human auditory development. Springer-Verlag, New York, pp 61–105

    Google Scholar 

  • Fabiani M, Sohmer H, Tait C, Gafni M, Kinarti B (1979) A functional measure of brain activity: brain stem transmission time. Electroen Clin Neuro 47:483–491

    Article  CAS  Google Scholar 

  • Fritzsch B, Barald KF, Lomax MI (1997) Early embryology of the vertebrate ear. In: Werner L, Fay RR, Popper AN (eds) Springer Handbook of Auditory Research, Vo. 42, Human auditory development. Springer-Verlag, New York, pp 80–145

    Google Scholar 

  • Galatius A, Andersen MBER, Haugan B, Langhoff HE, Jespersen A (2006) Timing of epiphyseal development in the flipper skeleton of the harbour porpoise (Phocoena phocoena) as an indicator of paedomorphosis. Acta Zool-Stockholm 87:77–82

  • Geal-Dor M, Freeman S, Li G, Sohmer H (1993) Development of hearing in neonatal rats: air and bone conducted ABR thresholds. Hearing Res 69(1–2):236–242

    Article  CAS  Google Scholar 

  • Gorga MP, Kaminski JR, Beauchaine KA, Jesteadt W (1988) Auditory brainstem response to tone bursts in normally hearing subjects. J Speech Hear Res 31:87–97

    Article  CAS  PubMed  Google Scholar 

  • Grossman C (1955) Eletro-ontogenesis of celebral activity. Arch Neuro Psychiatr 74(2):186–202

    CAS  Google Scholar 

  • Hecox K, Galambos R (1974) Brain stem auditory evoked responses in human infants and adults. Arch Otolaryngol 99:30–33

    Article  CAS  PubMed  Google Scholar 

  • Houser DS, Finneran JJ (2006) Variation in the hearing sensitivity of a dolphin population determined through the use of evoked potential audiometry. J Acoust Soc Am 120(6):4090–4099

    Article  PubMed  Google Scholar 

  • Jamon M (2006) The early development of motor control in neonate rat. C R Pale 5:657–666

    Article  Google Scholar 

  • Kastelein RA, Hoek L, de Jong CAF, Wensveen PJ (2010) The effect of signal duration on the underwater detection thresholds of a harbour porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz. J Acoust Soc Am 128(5):3211–3222

    Article  PubMed  Google Scholar 

  • Lancaster WC, Ary WJ, Krysl P, Cranford TW (2015) Precocial development within the tympanoperiotic complex in cetaceans. Mar Mammal Sci 31(1):369–375

    Article  Google Scholar 

  • Linnenschmidt M, Wahlberg M, Damsgaard Hansen J (2013) Modulation rate transfer function of a harbour porpoise (Phocoena phocoena). J Comp Physiol B 199(2):115–126

    Article  Google Scholar 

  • Liu GB (2003) Functional development of the auditory brainstem in the tammar wallaby (Macropus eugenii): the superior olivary complex and its relationship with the auditory brainstem response (ABR). Hearing Res 175:152–164

    Article  Google Scholar 

  • Lyamin O, Pryaslova J, Lance V, Siegel J (2005) Animal behaviour: Continuous activity in cetaceans after birth. Nature 435:1177

    Article  CAS  PubMed  Google Scholar 

  • Madsen PTM, Wahlberg M (2007). Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales. Deep-Sea Res Pt I 54(8):1421–1444

    Article  Google Scholar 

  • Møhl B, Andersen S (1973) Echolocation: high-frequency component in the click of the harbour porpoise (Phocoena ph. L.). J Acoust Soc Am 54:1368–1372

    Article  PubMed  Google Scholar 

  • Mooney TA, Nachtigall PE, Yuen MML (2006) Temporal resolution of the Risso’s dolphin, Grampus griseus, auditory system. J Comp Physiol A 192:373–380

    Article  Google Scholar 

  • Mooney TA, Yamato M, Branstetter BK (2012) Hearing in cetaceans: from natural history to experimental biology. Adv Mar Biol 63:197–244

    Article  PubMed  Google Scholar 

  • Moore JK, Perazzo LM, Braun A (1995) Time course of axonal myelination in the human brainstem auditory pathway. Hearing Res 87:21–31

    Article  CAS  Google Scholar 

  • Nachtigall PE, Yen MML, Mooney TA, Taylor KA (2005) Hearing measurements from a stranded infant Risso’s dolphin, Grampus griseus. J Exp Biol 208:4181–4188

    Article  PubMed  Google Scholar 

  • Noren SR, Noren DP, Gaydos JK (2015) Living in the fast lane: rapid development of the locomotor muscle in immature harbor porpoises (Phocoena phocoena). J Comp Physiol B 184:1065–1076

    Article  Google Scholar 

  • Popov VV, Supin A Ya (1990) Auditory brain stem responses in characterization of dolphin hearing. J Comp Physiol A 166:385–393

    Article  CAS  PubMed  Google Scholar 

  • Pujol R, Hilding D (1973) Anatomy and physiology of the onset of auditory function. Acta Oto-laryngol 76:1–10

    Article  CAS  Google Scholar 

  • Read AJ (1999) Harbour porpoise—Phocoena phocoena (Linnaeus, 1758). In: Ridgway SH, Harrison SR (eds) Handbook of Marine Mammals vol 6: The second book of dolphins and porpoises. Academic Press, New York, pp 323–356

    Google Scholar 

  • Ridgway SH, Carder DA (2001) Assessing hearing and sound production in cetaceans not available for behavioural audiograms: experiences with sperm, pygmy sperm and gray whales. Aq Mamm 27:267–276

    Google Scholar 

  • Ridgway SH, Bullock TH, Carder DA, Seeley RL, Woods D, Galambos R (1981) Auditory brainstem response in dolphins. Proc Nat Acad Sci USA 78(3):1943–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley C, Buchwald JS, Norman R, Guthrie D (1980) Brain stem auditory evoked response development in the kitten. Brain Res 182:313–326

    Article  CAS  PubMed  Google Scholar 

  • Siebert U, Pozniak B, Andersen Hansen K, Nordstrom G, Teilmann J, van Elk N, Vossen A, Dietz R (2011) Investigations of thyroid and stress hormones in free-ranging and captive harbour porpoises (Phocoena phocoena): a pilot study. Aq Mamm 37(4):443–453

    Article  Google Scholar 

  • Sininger YS, Abdala C, Cone-Wesson B (1997) Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hearing Res 104:27–38

    Article  CAS  Google Scholar 

  • Smith DJ, Kraus N (1987) Postnatal development of the auditory brainstem response (ABR) in the unanesthetized gerbil. Hearing Res 27:157–164

    Article  CAS  Google Scholar 

  • Starr A, Amlie RN, Martin WH, Sanders S (1977) Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 60:831–839

    CAS  PubMed  Google Scholar 

  • Sterbing SJ (2002) Postnatal development of vocalizations and hearing in the phyllostomid bat, Carollia perspicillata. J Mammal 83(2):516–525

    Article  Google Scholar 

  • Sterbing SJ, Schmidt U, Rübsamen R (1994) Postnatal development of frequency-place code and tuning characteristics in the auditory midbrain of the phyllostomid bat Carollia perspicillata. Hearing Res 76:133–146

    Article  CAS  Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Szymanski MD, Supin A Ya, Bain DE (1998) Killer whale (Orcinus orca) auditory evoked potentials to rhythmic clicks. Mar Mammal Sci 14(4):676–691

    Article  Google Scholar 

  • Walsh EJ, McGee J, Javel E (1986a) Development of auditory-evoked potentials in the cat. I. Onset of response and development of sensitivity. J Acoust Soc Am 79(3):712–723

  • Walsh EJ, McGee J, Javel E (1986b) Development of auditory-evoked potentials in the cat. II. Wave latencies. J Acoust Soc Am 79(3):725–744

  • Werner LA, Gray L (1997) Behavioral studies of hearing development. In: Werner L, Fay RR, Popper AN (eds) Springer handbook of auditory research, Vo. 42, Human auditory development. Springer-Verlag, New York, pp 12–79

    Google Scholar 

  • West KL, Ramer J, Brown JL, Sweeney J, Hanahoe EM, Reidarson T, Proudfoot J, Bergfelt DR (2014) Thyroid hormone concentrations in relation to age, sex, pregnancy, and perinatal loss in bottlenose dolphins (Tursiops truncates). Gen Comp Endocrinol 197:73–81

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson AR, Jiang ZD (2006) Brainstem auditory evoked response in neonatal neurology. Seminarion Fetal Neonatal. Medicine (Baltimore) 11:444–451

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. 3rd edn. Prentice-Hall International, Inc., Upper Saddle River

Download references

Acknowledgements

The experiments were performed according to the ethical rules of Danish Council for Experiments on Animals. The animals are held at the Fjord&Bælt under a contract of the Danish Nature Agency, Ministry of Environment and Food of Denmark, J.nr.NST-41500-00212. We thank all the trainers and volunteers helping out with observing the calf and preparing for the ABR trials, and Kristian Beedholm for valuable comments on an earlier version of this paper. This project was funded by grants from the Danish National Research Council to Peter Madsen, Annemarie Surlykke, and Magnus Wahlberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Wahlberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahlberg, M., Delgado-García, L. & Kristensen, J.H. Precocious hearing in harbour porpoise neonates. J Comp Physiol A 203, 121–132 (2017). https://doi.org/10.1007/s00359-017-1145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1145-0

Keywords

Navigation