, Volume 199, Issue 2, pp 127-138

Azimuthal sound localization in the European starling (Sturnus vulgaris): II. Psychophysical results

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Small songbirds have a difficult analysis problem: their head is small compared to the wavelengths of sounds used for communication providing only small interaural time and level differences. Klump and Larsen (1992) measured the physical binaural cues in the European starling (Sturnus vulgaris) that allow the comparison of acoustical cues and perception. We determined the starling’s minimum audible angle (MAA) in an operant Go/NoGo procedure for different spectral and temporal stimulus conditions. The MAA for broadband noise with closed-loop localization reached 17°, while the starling’s MAA for open-loop localization of broadband noise reached 29°. No substantial difference between open-loop and closed-loop localization was found in 2 kHz pure tones. The closed-loop MAA improved from 26° to 19° with an increase in pure tone frequency from 1 to 4 kHz. This finding is in line with the physical cues available. While the starlings can only make use of interaural time difference cues at lower frequencies (e.g., 1 and 2 kHz), additional interaural level difference cues become available at higher frequencies (e.g., 4 kHz or higher, Klump and Larsen 1992). An improvement of the starling’s MAA with an increasing number of standard stimulus presentations prior to the test stimulus has important implications for determining relative (MAA) localization thresholds.