Journal of Comparative Physiology A

, Volume 192, Issue 11, pp 1213–1222

Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance

Original Paper

DOI: 10.1007/s00359-006-0150-5

Cite this article as:
Drechsler, P. & Federle, W. J Comp Physiol A (2006) 192: 1213. doi:10.1007/s00359-006-0150-5


Many insects possess smooth adhesive pads on their legs, which adhere by thin films of a two-phasic secretion. To understand the function of such fluid-based adhesive systems, we simultaneously measured adhesion, friction and contact area in single pads of stick insects (Carausius morosus). Shear stress was largely independent of normal force and increased with velocity, seemingly consistent with the viscosity-effect of a continuous fluid film. However, measurements of the remaining force 2 min after a sliding movement show that adhesive pads can sustain considerable static friction. Repeated sliding movements and multiple consecutive pull-offs to deplete adhesive secretion showed that on a smooth surface, friction and adhesion strongly increased with decreasing amount of fluid. In contrast, pull-off forces significantly decreased on a rough substrate. Thus, the secretion does not generally increase attachment but does so only on rough substrates, where it helps to maximize contact area. When slides were repeated at one position so that secretion could accumulate, sliding shear stress decreased but static friction remained clearly present. This suggests that static friction which is biologically important to prevent sliding is based on non-Newtonian properties of the adhesive emulsion rather than on a direct contact between the cuticle and the substrate.


Wet adhesionShear stressEmulsionAttachment devicesCarausius morosus

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Zoology IIUniversity of Würzburg, BiocenterWürzburgGermany
  2. 2.Department of ZoologyUniversity of CambridgeCambridgeUK