Journal of Comparative Physiology A

, Volume 188, Issue 4, pp 283–293

Opponent and nonopponent contributions to the zebrafish electroretinogram using heterochromatic flicker photometry

  • W. Patterson
  • A. McDowell
  • A. Hughes
  • J. Bilotta
Original Paper

DOI: 10.1007/s00359-002-0302-1

Cite this article as:
Patterson, W., McDowell, A., Hughes, A. et al. J Comp Physiol A (2002) 188: 283. doi:10.1007/s00359-002-0302-1

Abstract.

While some lower vertebrates, such as zebrafish, do not appear to possess anatomically separate pathways of processing visual information (such as M-pathways and P-pathways), it is believed that separate processing of the visual stimulus (such as luminance and chromatic processing) is a basic requirement of vertebrate vision. In this study, spectral sensitivity functions were obtained from electroretinogram responses to heterochromatic flicker photometry stimuli at several flicker rates, including a low flicker rate (2 Hz), in an attempt to predominately stimulate chromatic processes and a high flicker rate (16 Hz), in an attempt to predominately stimulate luminance processes. In addition, chromatic adaptation was used to isolate and examine the temporal properties of the different cone-type contributions to the electroretinogram response. Spectral sensitivity functions based on responses to heterochromatic stimuli of a low flicker rate appeared to receive both opponent and nonopponent contributions; however, when the stimulus flicker rate was high, spectral sensitivity appeared to be a function of only nonopponent mechanisms. Also, the differences in cone contributions to the spectral sensitivity functions across the different flicker rates appear to be related to the temporal properties of the cone contributions to the electroretinogram response.

Danio rerio Heterochromatic flicker Color vision Heterochromatic flicker photometry Ultraviolet sensitivity

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • W. Patterson
    • 1
  • A. McDowell
    • 1
  • A. Hughes
    • 2
  • J. Bilotta
    • 1
  1. 1.Department of Psychology, Western Kentucky University, 1 Big Red Way, Bowling Green KY 42101USA
  2. 2.Department of Psychology, Nazareth College of Rochester, Rochester, NY 14618USA
  3. 3.Supplementary address: Biotechnology Center, Western Kentucky University, Bowling Green, KY 42101USA
  4. 4.Supplementary address: Biotechnology Center, Western Kentucky University, Bowling Green, KY 42101USA