Skip to main content
Log in

Mind the gap: a new insight into the tip leakage vortex using stereo-PIV

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The tip leakage vortex (TLV), which develops in the clearance between the rotor and the stator of axial hydro turbines, has been studied for decades. Yet, many associated phenomena are still not understood. For instance, it remains unclear how the clearance size is related to the occurrence of cavitation in the vortex, which can lead to severe erosion. Experiments are here carried out on the influence of the clearance size on the tip vortex structure in a simplified case study. A NACA0009 hydrofoil is used as a generic blade in a water tunnel while the clearance between the blade tip and the wall is varied. The 3D velocity fields are measured using Stereo Particle Image Velocimetry (SPIV) in three planes located downstream of the hydrofoil for different values of the upstream velocity, the incidence angle and a large number of tip clearances. The influence of the flow conditions on the structure of the TLV is described through changes in the vortex intensity, core axial flow, vortex center position and wandering motion amplitude. Moreover, high-speed visualizations are used to highlight the vortex core trajectory and clearance flow alteration, turning into a wall jet as the tip clearance is reduced. The measurements clearly reveal the existence of a specific tip clearance for which the vortex strength is maximum and most prone to generating cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(c\) :

Hydrofoil chord

\(h\) :

Maximum foil thickness

\(W_{\infty }\) :

Inlet velocity

\(p_{\infty }\) :

Inlet pressure

\(x,y,z\) :

Cartesian coordinates

\(u,v,w\) :

Spanwise, transverse and axial velocity

\(x_\text {c}, y_\text {c}\) :

Vortex center coordinates

\(r_{\rm c}\) :

Vortex core radius

\(Re_\text {c}\) :

Reynolds number \(({W_{\infty }c}/{\nu })\)

\(\alpha\) :

Incidence angle

\(\tau\) :

Normalized tip clearance \((gap/h)\)

\(\omega\) :

Vorticity

\(\varGamma\) :

Circulation

\(\varGamma ^*\) :

Normalized circulation \((\varGamma /W_{\infty } r_{\rm c})\)

\(\varGamma ^*_{\infty }\) :

\(\varGamma ^*\) at \(\tau\) = 2

\(C_{\rm p_{\rm min}}\) :

Pressure coefficient in the vortex center \(\left(\frac{p(r\,=\,0)\,-\,p_{\infty }}{\frac{1}{2}\rho W_{\infty }^2}\right)\)

References

  • Arndt RE (2002) Cavitation in vortical flows. Annu Rev Fluid Mech 34(1):143–175

    Article  MathSciNet  Google Scholar 

  • Ausoni P, Zobeiri A, Avellan F, Farhat M (2012) The effects of a tripped turbulent boundary layer on vortex shedding from a blunt trailing edge hydrofoil. J Fluids Eng 134(5):051207–051207. doi:10.1115/1.4006700

    Article  Google Scholar 

  • Batchelor GK (1964) Axial flow in trailing line vortices. J Fluid Mech 20:645–658. doi:10.1017/S0022112064001446

    Article  MATH  MathSciNet  Google Scholar 

  • Bhagwat MJ, Leishman JG (2002) Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations. In: Annual forum proceedings-American Helicopter Society. American Helicopter Society, Inc, vol 58, pp 2042–2057

    Google Scholar 

  • Bhagwat MJ, Ramasamy M (2012) Effect of tip vortex aperiodicity on measurement uncertainty. Exp Fluids 53(5):1191–1202

    Article  Google Scholar 

  • Bouillot P, Brina O, Ouared R, Lovblad K, Pereira VM, Farhat M (2014) Multi-time-lag PIV analysis of steady and pulsatile flows in a sidewall aneurysm. Exp Fluids 55(6):1–11

    Article  Google Scholar 

  • Boulon O, Callenaere M, Franc JP, Michel JM (1999) An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil. J Fluid Mech 390:1–23

    Article  MATH  Google Scholar 

  • Chang NA, Yakushiji R, Dowling DR, Ceccio SL (2007) Cavitation visualization of vorticity bridging during the merger of co-rotating line vortices. Phys Fluids (1994-present) 19(5):058106. doi:10.1063/1.2732264

    Article  Google Scholar 

  • Chen G, Marble F, Greitzer E, Tan C (1991) Similarity analysis of compressor tip clearance flow structure. J Turbomach 113(2):260–269

    Article  Google Scholar 

  • Del Pino C, Parras L, Felli M, Fernandez-Feria R (2011) Structure of trailing vortices: comparison between particle image velocimetry measurements and theoretical models. Phys Fluids 23(013):602

    Google Scholar 

  • Devenport WJ, Rife MC, Liapis SI, Follin GJ (1996) The structure and development of a wing-tip vortex. J Fluid Mech 312:67–106. doi:10.1017/S0022112096001929

    Article  MathSciNet  Google Scholar 

  • Doligalski T, Smith C, Walker J (1994) Vortex interactions with walls. Annu Rev Fluid Mech 26(1):573–616

    Article  MathSciNet  Google Scholar 

  • Fabre D, Fontane J, Brancher P, Le Dizes S, Roy C, Leweke T, Fernandez-Feria R, Parras L, del Pino C (2008) Synthesis on vortex meandering. Technical report, STREP project no. AST4-CT-2005-012238

  • Farrell K, Billet M (1994) A correlation of leakage vortex cavitation in axial-flow pumps. J Fluids Eng 116(3):551–557

    Article  Google Scholar 

  • Gopalan S, Katz J, Liu HL (2002) Effect of gap size on tip leakage cavitation inception, associated noise and flow structure. J Fluids Eng 124(4):994–1004

    Article  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429. doi:10.1088/0957-0233/12/9/307

    Article  Google Scholar 

  • Green SI (1995) Fluid vortices: fluid mechanics and its applications, vol 30. Springer, Berlin

    MATH  Google Scholar 

  • Iungo G, Skinner P, Buresti G (2009) Correction of wandering smoothing effects on static measurements of a wing-tip vortex. Exp Fluids 46(3):435–452. doi:10.1007/s00348-008-0569-2

    Article  Google Scholar 

  • Laborde R, Mory M, Chantrel P (1997) Tip clearance and tip vortex cavitation in an axial flow pump. J Fluids Eng 119(3):680–685

    Article  Google Scholar 

  • Le Guen A, Viot X, Billard JY, Fruman D (1997) Fluctuations des vitesses et biais spatial dans le tourbillon marginal. Sixièmes Journées de l’Hydrodynamique 317–328

  • Lee T, Pereira J (2010) Nature of wakelike and jetlike axial tip vortex flows. J Aircr 47(6):1946–1954

    Article  Google Scholar 

  • McCormick B (1962) On cavitation produced by a vortex trailing from a lifting surface. J Fluids Eng 84(3):369–378

    Google Scholar 

  • Miorini RL, Wu H, Katz J (2012) The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump. J Turbomach 134(3):031,018

    Article  Google Scholar 

  • Moore DW, Saffman PG (1973) Axial flow in laminar trailing vortices. Proc R Soc Lond Ser A Math Phys Sci 333(1595):491–508

    Article  MATH  Google Scholar 

  • Müller A, Dreyer M, Andreini N, Avellan F (2013) Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow. Exp Fluids 54(4):1–11. doi:10.1007/s00348-013-1514-6

    Article  Google Scholar 

  • Pasche S, Gallaire F, Dreyer M, Farhat M (2014) Obstacle-induced spiral vortex breakdown. Exp Fluids 55(8):1–11. doi:10.1007/s00348-014-1784-7

    Article  Google Scholar 

  • Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29(2):103–116. doi:10.1007/s003480000143

    Article  Google Scholar 

  • Roussopoulos K, Monkewitz PA (2000) Measurements of tip vortex characteristics and the effect of an anti-cavitation lip on a model Kaplan turbine blade. Flow Turbul Combust 64(2):119–144

    Article  MATH  Google Scholar 

  • Spalart PR (1998) Airplane trailing vortices. Annu Rev Fluid Mech 30(1):107–138

    Article  MathSciNet  Google Scholar 

  • Vatistas GH, Kozel V, Mih W (1991) A simpler model for concentrated vortices. Exp Fluids 11(1):73–76

    Article  Google Scholar 

  • van der Wall BG, Richard H (2006) Analysis methodology for 3C-PIV data of rotary wing vortices. Exp Fluids 40:798–812. doi:10.1007/s00348-006-0117-x

    Article  Google Scholar 

  • Wang Y, Devenport WJ (2004) Wake of a compressor cascade with tip gap, part 2: effects of endwall motion. AIAA J 42(11):2332–2340

    Article  Google Scholar 

  • Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29(1):S003–S012. doi:10.1007/s003480070002

    Google Scholar 

  • Wu H, Tan D, Miorini RL, Katz J (2011) Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade. Exp Fluids 51(6):1721–1737. doi:10.1007/s00348-011-1189-9

    Article  Google Scholar 

Download references

Acknowledgments

The present study was performed within the framework of the HydroNet project (hydronet.epfl.ch). The authors would like to thank the Competence Center of Energy and Mobility (CCEM) and swisselectric research for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Dreyer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreyer, M., Decaix, J., Münch-Alligné, C. et al. Mind the gap: a new insight into the tip leakage vortex using stereo-PIV. Exp Fluids 55, 1849 (2014). https://doi.org/10.1007/s00348-014-1849-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1849-7

Keywords

Navigation