Skip to main content
Log in

Synchrotron X-ray techniques for fluid dynamics

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

X-ray diagnostics have the potential for making quantitative measurements in many flowfields where optical diagnostics are challenging, especially multiphase flows. In the past, many such measurements have been taken with laboratory-scale X-ray sources. This review describes the measurements that are possible with synchrotron X-ray sources, which can provide high-flux, tunable, monochromatic X-ray beams that cannot be created with laboratory sources. The relevant properties of X-rays and their interactions with matter are described. The types and capabilities of various X-ray optics and sources are discussed. Finally, four major X-ray diagnostics are described in detail. X-ray radiography provides quantitative measurements of density in variable-density flows. X-ray phase-contrast imaging is used to visualize multiphase flows with high spatial and temporal resolution. X-ray fluorescence spectroscopy shows significant promise to study mixing in single-phase and multiphase flows. Small-angle X-ray scattering is a powerful technique to examine small-scale particles in flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Als-Nielsen J, McMorrow D (2001) Elements of modern X-ray physics. Wiley, New York

    Google Scholar 

  • Arndt UW et al. (2006) X-rays. In: International tables for crystallography, chapter 4.2, vol C, pp 191–258

  • Balewski B, Heine B, Tropea C (2010) Experimental investigation of the correlation between nozzle flow and spray using laser Doppler velocimeter, phase Doppler system, high-speed photography, and X-ray radiography. At Sprays 20(1):57–70

    Article  Google Scholar 

  • Balz R (2013) Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet. Exp Fluids 54:1476–1488

    Article  Google Scholar 

  • Berrocal E, Kristensson E, Richter M, Linne M, Alden M (2008) Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays. Opt Express 16(22):17870–17881

    Article  Google Scholar 

  • Braun A et al (2004) Size-range analysis of diesel soot with ultra-small angle X-ray scattering. Combust Flame 137:63–72

    Article  Google Scholar 

  • Cai W et al (2003) Quantitative analysis of highly transient fuel sprays by time-resolved X-radiography. Appl Phys Lett 83:1671–1673

    Article  Google Scholar 

  • Cheong S-K et al. (2004) Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast X-radiography. SAE paper 2004-01-2026

  • Cloetens P et al (1996) Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys 29:133–146

    Article  Google Scholar 

  • Creagh DC (2006) X-ray absorption spectra. In: International tables for crystallography, chapter 4.2.3, vol C pp 213–220

  • Davis TJ et al (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598

    Article  Google Scholar 

  • Dhal B et al (2006) Bending magnet source: a radiation source for X-ray phase contrast tomography. Radiat Phys Chem 75:2004–2007

    Article  Google Scholar 

  • Dubsky S et al (2012) Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels. Exp Fluids 52:543–554

    Article  Google Scholar 

  • Eberhart C, Lineberry D, Fredrick R, Kastengren A (2012) A mechanistic assessment of swirl injection and atomization by X-ray radiographic and optical techniques. AIAA paper 2012-3746, 48th AIAA Joint Propulsion Conference, Atlanta, GA

  • Eng P et al. (1998) Dynamically figured kirkpatrick baez X-ray micro-focusing optics. In: SPIE conference on X-ray microfocusing: applications and techniques, San Diego, CA

  • Gao N, Janssens K (2004) Polycapillary X-ray optics. In: Tsuji K, Injuk J, Van Grieken R (ed) X-ray spectrometry: recent technological advances, Wiley, pp 89–110

  • Halls B, Heindel T, Meyer T, Kastengren A (2012) X-ray spray diagnostics: comparing sources and techniques. AIAA paper 2012-1055, 50th AIAA Aerospace Sciences Meeting, Nashville, TN

  • Heindel T (2011) A review of X-ray flow visualization with applications to multiphase flows. J Fluids Eng 133, paper 074001

    Google Scholar 

  • Hessler J, Seifert S, Winans R, Fletcher T (2001) Small-angle X-ray studies of soot inception and growth. Faraday Discuss 119:395–407

    Article  Google Scholar 

  • Jamison RA et al (2012) X-ray velocimetry within the ex vivo carotid artery. J Synchrotron Radiat 19:1050–1055

    Article  Google Scholar 

  • Kak A, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New York

    MATH  Google Scholar 

  • Kastengren A et al (2009) X-ray radiography measurements of diesel spray structure at engine-like ambient density. At Sprays 19:1031–1044

    Article  Google Scholar 

  • Kastengren A et al (2011) Application of X-ray fluorescence to turbulent mixing. J Synchrotron Radiat 18:811–815

    Article  Google Scholar 

  • Kastengren A et al. (2012) Time-resolved X-ray radiography of sprays from engine combustion network spray a diesel injectors. In: 12th triennial ICLASS conference, Heidelberg, Germany

  • Kim G, Lee S-J (2006) X-ray PIV measurements of blood flows without tracer particles. Exp Fluids 41:195–200

    Article  Google Scholar 

  • Knoll G (2000) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  • Koch A, Raven C, Spanne P, Snigirev A (1998) X-ray imaging with submicrometer resolution employing transparent luminescent screens. J Opt Soc Am A 15:1940–1951

    Article  Google Scholar 

  • Lee S-J, Kim Y (2008) In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging. Ann Bot 101:595–602

    Article  Google Scholar 

  • Lee W-K, Fezzaa K, Uemura T (2011) Three-dimensional X-ray micro-velocimetry. J Synchrotron Radiat 18:302–304

    Article  Google Scholar 

  • Leick P, Grzeszik R, Arndt S, Wissel S (2011) Suppression of multiple scattering using structured light sheets: a first assessment for diesel and gasoline spray visualization. ILASS Europe

  • Lightfoot M et al. (2012) A study of gas-centered swirl coaxial injectors using X-ray radiography. In: 12th triennial ICLASS conference, Heidelberg, Germany

  • Lin K-C, Ryan M, Carter C, Sandy A, Narayanan S, Ilavsky J, Wang, J (2008a) Investigation of droplet properties of supercritical ethylene jets using Small Angle X-ray Scattering (SAXS) Technique. In: 21st ILASS-Americas conference, Orlando, FL

  • Lin K-C et al (2011) Investigation of pure- and aerated-liquid jets using ultra-fast X-ray phase contrast imaging. Nucl Instrum Methods Phys Res A 649:194–196

    Article  Google Scholar 

  • Lin K-C, Carter C, Kastengren A, Fezzaa K (2012) Exploration of aerated-liquid jets using X-ray phase contrast imaging and x-ray radiography. In: ICLASS 2012, 12th triennial international conference on liquid atomization and spray systems, Heidelberg, Germany, Sep 2–6, 2012

  • Lin K-C, Carter C, Cernucan J, Fezzaa K, Wang J (2008b) Ultrafast X-ray study of aerated-liquid jets in a quiescent environment. In: 21st ILASS-Americas conference, Orlando, FL

  • Linne M (2012a) Analysis of X-ray phase contrast imaging in atomizing sprays. Exp Fluids 52:1201–1218

    Article  Google Scholar 

  • Linne M (2012b) Analysis of X-ray radiography in atomizing sprays. Exp Fluids 53:655–671

    Article  Google Scholar 

  • Linne M, Paciaroni M, Hall T, Parker T (2006) Ballistic imaging of the near field in a diesel spray. Exp Fluids 40:836–846

    Article  Google Scholar 

  • Liu Z et al (2010) Ultra-fast phase-contrast X-ray imaging of near-nozzle velocity field of high-speed diesel fuel sprays. In: 22nd Annual ILASS-Americas Conference, Paper 169, Cincinnati, OH

  • MacPhee A et al (2002) X-ray imaging of shock waves generated by high-pressure fuel sprays. Science 295:1261–1263

    Article  Google Scholar 

  • Manke I et al. (2007) Investigation of water evolution and transport in fuel cells with high resolution synchrotron X-ray radiography. Appl Phys Lett 90, paper 174105

    Google Scholar 

  • Marchitto L, Dabagov S, Allocca L, Hampai D, Liedl A, Alfuso S (2013) X-ray tomography of high-pressure fuel spray by polycapillary optics. In: Proceedings of the SPIE 8848, advances in X-ray/EUV optics and components VIII, paper 884808

  • Martin T, Koch A (2006) Recent developments in X-ray imaging with micrometer spatial resolution. J Synchrotron Radiat 13:180–194

    Article  Google Scholar 

  • Maslen EN (2006) X-ray absorption. In: International tables for crystallography, chapter 6.3, vol C, pp 599–608

  • Moon S et al. (2011) Ultrafast X-ray phase-contrast imaging of high-speed fuel sprays from a two-hole diesel nozzle. In: 22nd Annual ILASS-Americas conference, Cincinnati, OH

  • Muthuvelu P et al (2004) Investigations of vascularization and blood flow at the subchondral plate using an X-ray fluorescence technique. Radiat Phys Chem 71:961–962

    Article  Google Scholar 

  • Narayanan T (2007) Synchrotron small-angle x-ray scattering. In: Soft matter: scattering, imaging, and manipulation, Chapter 5, Springer, London

  • Paganin D, Mayo S, Gureyev T, Miller P, Wilkins S (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:22–40

    MathSciNet  Google Scholar 

  • Pouvesle JM, Cachoncinlle C, Viladrosa R, Robert E, Khacef A (1996) Compact flash X-ray sources and their applications. Nucl Instrum Methods Phys Res B 113:124–140

    Article  Google Scholar 

  • Powell CF, Duke D, Kastengren AL, Ilavsky J (2013) Measurements of diesel spray droplet size with ultra-small angle X-ray scattering. In: 25th ILASS-Americas conference, Pittsburgh, PA

  • Rack A et al (2009) Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams. J Synchrotron Radiat 16:432–434

    Article  Google Scholar 

  • Renzi MJ et al (2002) Pixel array detectors for time resolved radiography. Rev Sci Instrum 73:1621–1624

    Article  Google Scholar 

  • Rimmer A et al (1998) Rapid fluid content measurement method for fingered flow in an oil-water-sand system using synchrotron X-rays. J Contam Hydrol 31:315–335

    Article  Google Scholar 

  • Robert E, Huré L, Cachoncinlle C, Viladrosa R, Pouvesle JM (1999) Simultaneous X-ray induced fluorescence imaging and radiography of argon jets in ambient air. Meas Sci Technol 10:789–795

    Article  Google Scholar 

  • Robert E et al. (2010) Table-top flash X-ray diagnostics of dodecane sprays. In: 23rd ILASS-Europe conference, Bruno, Czech Republic

  • Rutter M et al. (2002) Viscosity of liquid Fe at high pressure. Phys Rev B 66, paper 060102

    Google Scholar 

  • Sanchez del Rio M, Dejus RJ (2004) Status of XOP: an X-ray optics software toolkit. In: SPIE Proceedings vol 5536, pp171–174

  • Scarcelli R et al. (2012) High pressure gaseous injection: a comprehensive analysis of gas dynamics and mixing effects. In: ASME paper ICEF2012-92137, ASme fall internal combustion engine division technical conference, Vancouver, BC

  • Sen D et al (2007) Slow drying of a spray of nanoparticles dispersion. In Situ SAXS investigation. Langmuir 23:4296–4302

    Article  Google Scholar 

  • Silversmit G et al (2009) Polycapillary-optics-based micro-XANES and micro-EXAFS at a third-generation bending-magnet beamline. J Synchrotron Radiat 16:237–246

    Article  Google Scholar 

  • Snigriev A et al (1998) Focusing high-energy X rays by compound refractive lenses. Appl Opt 37(4):652–662

    Google Scholar 

  • Vabre A et al (2009) Synchrotron ultra-fast X-ray imaging of a cavitating flow in a Venturi profile. Nucl Instrum Methods Phys Res A 607:215–217

    Article  Google Scholar 

  • Walko DA, Arms DA, Miceli A, Kastengren A (2011) Empirical dead-time corrections for energy-resolving detectors at synchrotron sources. Nucl Instrum Methods Phys Res A 649:81–83

    Article  Google Scholar 

  • Wegener P, Clumpner J, Wu B (1972) Homogeneous nucleation and growth of ethanol drops in supersonic flow. Phys Fluids 15:1876–1896

    Article  Google Scholar 

  • Weitkamp T, Haas D, Wegrzynek D, Rack A (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18:617–629

    Article  Google Scholar 

  • Weon BM et al (2008) A coherent synchrotron X-ray microradiology investigation of bubble and droplet coalescence. J Synchrotron Radiat 15:660–662

    Article  Google Scholar 

  • Woll AR et al (2006) Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl Phys 83:235–238

    Google Scholar 

  • Wilkins SW et al (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338

    Article  Google Scholar 

  • Wyslouzil B et al (2007) Small angle X-ray scattering measurements probe water nanodroplet evolution under highly non-equilibrium conditions. Phys Chem Chem Phys 9:5353–5358

    Google Scholar 

  • Zhang LV et al (2012a) Evolution of the ejecta sheet from the impact of a drop with a deep pool. J Fluid Mech 690:5–15

    Article  MATH  Google Scholar 

  • Zhang LV et al (2012b) Splashing from drop impact into a deep pool: multiplicity of jets and the failure of conventional scaling. J Fluid Mech 703:402–413

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357, as well as the US DOE Vehicle Technologies Office and its Advanced Combustion Engine program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Kastengren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastengren, A., Powell, C.F. Synchrotron X-ray techniques for fluid dynamics. Exp Fluids 55, 1686 (2014). https://doi.org/10.1007/s00348-014-1686-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1686-8

Keywords

Navigation