, Volume 49, Issue 3, pp 637-656
Date: 16 Feb 2010

A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In order to accurately assess measurement resolution and measurement uncertainty in DPIV and TPIV measurements, a series of simulations were conducted based on the flow field from a homogeneous isotropic turbulence data set (Re λ = 141). The effect of noise and spatial resolution was quantified by examining the local and global errors in the velocity, vorticity and dissipation fields in addition to other properties of interest such as the flow divergence, topological invariants and energy spectra. In order to accurately capture the instantaneous gradient fields and calculate sensitive quantities such as the dissipation rate, a minimum resolution of x/η = 3 is required, with smoothing recommended for the TPIV results to control the inherently higher noise levels. Comparing these results with experimental data showed that while the attenuation of velocity and gradient quantities was predicted well, higher noise levels in the experimental data led increased divergence.