Aalburg C, van Leer B, Faeth GM (2003) Deformation and drag properties of round drops subjected to shock-wave disturbances. AIAA J 41(12):2371–2378

CrossRefApte SV, Gorokhovski M, Moin P (2003) LES of atomizing spray with stochastic modeling of secondary breakup. Int J Multiphase Flow 29:1503–1522

MATHCrossRefArcoumanis C, Khezzar L, Whitelaw DS, Warren BCH (1994) Breakup of Newtonian and non-Newtonian Fluids in air jets. Exp Fluids 17(6):405–414

CrossRefArcoumanis C, Whitelaw DS, Whitelaw JH (1996) Breakup of droplets of Newtonian and non-Newtonian fluids. Atomization Spray 6:245–256

Babinsky E, Sojka PE (2002) Modeling drop size distributions. Prog Energ Combust 28:303–329

CrossRefBerthoumieu P, Carentz H, Villedieu P, Lavergne G (1999) Contribution to droplet breakup analysis. Int J Heat Fluid 20:492–498

CrossRefBird RB, Armstrong RRC, Hasseger O (1987) Dynamics of polymeric liquids. Wiley, New York

Brodkey, RS (1967) Formation of drops and bubbles. In: The phenomena of fluid motions. Addison-Wesley, Reading

Cao XK, Sun ZG, Li WF, Liu HF, Yu ZH (2007) A new breakup regime for liquid drops identified in a continuous and uniform air jet flow. Phys Fluids 19(5):057103

CrossRefChandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press, London

MATHChang CH, Liou MS (2007) A Robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM

^{+}-up scheme. J Comput Phys 225:840–873

MATHCrossRefMathSciNetChou WH, Faeth GM (1998) Temporal properties of secondary drop breakup in the bag breakup regime. Int J Multiphase Flow 24:889–912

MATHCrossRefChou WH, Hsiang LP, Faeth GM (1997) Temporal properties of drop breakup in the shear breakup regime. Int J Multiphas Flow 23(4):651–669

MATHCrossRefChryssakis CA, Assanis DN (2005) A secondary atomization model for liquid droplet deformation and breakup under high weber number conditions. In: ILASS Americas 18th annual conference on liquid atomization and spray systems, Irvine, CA, USA

Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York

Cohen RD (1994) Effect of viscosity on drop breakup. Int J Multiphase Flow 20(1):211–216

CrossRefCousin J, Yoon SJ, Dumouchel C (1996) Coupling of classical linear theory and maximum entropy formalism for prediction of drop size distribution in sprays: application to pressure-swirl atomizers. Atomization Spray 6:601–622

Dai Z, Faeth GM (2001) Temporal properties of secondary drop breakup in the multimode breakup regime. Int J Multiphase Flow 27:217–236

MATHCrossRefDuan RQ, Koshizuka S, Oka Y (2003a) Numerical and theoretical investigation of effect of density ratio on the critical weber number of droplet breakup. J Nucl Sci Technol 40(7):501–508

CrossRefDuan RQ, Koshizuka S, Oka Y (2003b) Two-dimensional simulation of drop deformation and breakup at around the critical Weber number. Nucl Eng Des 225:37–48

CrossRefDumouchel C (2006) A new formulation of the maximum entropy formalism to model liquid spray drop-size distribution. Part Part Syst Char 23:468–479

CrossRefDumouchel C, Boyaval S (1999) Use of the maximum entropy formalism to determine drop size characteristics. Part Part Syst Char 16:177–184

CrossRefFaeth GM, Hsiang LP, Wu PK (1995) Structure and breakup properties of sprays. Int J Multiphase Flow 21(Suppl): 99–127

MATHCrossRefGelfand BE (1996) Droplet breakup phenomena in flows with velocity lag. Prog Energ Combust 22:201–265

CrossRefGelfand BE, Gubin SA, Kogarko SM, Komar SP (1975) Singularities of the breakup of viscous liquid droplets in shock waves. J Eng Phys 25(3):1140–1142

CrossRefGökalp I, Chauveau C, Morin C, Vieille B, Birouk M (2000) Improving droplet breakup and vaporization models by including high pressure and turbulence effects. Atomization Spray 10:475–510

Gorokhovski M (2001) The stochastic Lagrangian model of drop breakup in the computation of liquid sprays. Atomization Spray 11:505–519

Gorokhovski MA, Saveliev VL (2003) Analyses of Kolmogorov’s model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization. Phys Fluids 15(1):184–192

CrossRefGuildenbecher DR, Sojka PE (2007) Secondary breakup of electrically charged Newtonian drops. In: Proceedings of IMECE2007, IMECE2007–4189

Han J, Tryggvason G (1999) Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Phys Fluids 11(12):3650–3667

MATHCrossRefHan J, Tryggvason G (2001) Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration. Phys Fluids 13(6):1554–1565

CrossRefHelenbrook BT, Edwards CF (2002) Quasi-steady deformation and drag of uncontaminated liquid drops. Int J of Multiphas Flow 28(10):1631–1657

MATHCrossRefHinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295

CrossRefHsiang LP, Faeth GM (1992) Near-limit drop deformation and secondary breakup. Int J Multiphas Flow 18(5):635–652

MATHCrossRefHsiang LP, Faeth GM (1993) Drop properties after secondary breakup. Int J Multiphase Flow 19(5):721–735

MATHCrossRefHsiang LP, Faeth GM (1995) Drop deformation and breakup due to shock wave and steady disturbances. Int J Multiphase Flow 21(4):545–560

MATHCrossRefHwang SS, Liu Z, Reitz RD (1996) Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops. Atomization Spray 6:353–376

Ibrahim EA, Yang HQ, Przekwas AJ (1993) Modeling of spray droplets deformation and breakup. J Propul Power 9(4):651–654

CrossRefIgra D, Ogawa T, Takayama K (2002) A parametric study of water column deformation resulting from shock wave loading. Atomization Spray 12:577–591

CrossRefIgra D, Takayama K (2001) Investigation of aerodynamic breakup of a cylindrical water droplet. Atomization Spray 11(2):167–185

Joseph DD, Beavers GS, Funada T (2002) Rayleigh–Taylor instability of viscoelastic drops at high Weber numbers. J Fluid Mech 453:109–132

MATHCrossRefJoseph DD, Belanger J, Beavers GS (1999) Breakup of a liquid drop suddenly exposed to a high-speed airstream. Int J Multiphase Flow 25:1263–1303

MATHCrossRefKalashnikov VN, Askarov AN (1989) Relaxation time of elastic stresses in liquids with small additions of soluble polymers of high molecular weights. J Eng Phys Thermophys 57:874–878

Khosla S, Smith CE, Throckmorton RP (2006) Detailed understanding of drop atomization by gas crossflow using the volume of fluid method. Inl: ILASS Americas, 19th annual conference on liquid atomization and spray systems, Toronto, Canada

Koshizuka A, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421

Lasheras JC, Villermaux E, Hopfinger EJ (1998) Break-up and atomization of a round water jet by a high-speed annular air jet. J Fluid Mech 357:351–379

CrossRefLee CH, Reitz RD (1999) Modeling the effects of gas density on the drop trajectory and breakup size of high-speed liquid drops. Atomization Spray 9:497–517

Lee CH, Reitz RD (2000) An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream. Int J Multiphase Flow 26:229–244

MATHCrossRefLee CS, Kim HJ, Park SW (2004) Atomization characteristics and prediction accuracies of hybrid break-up models for a gasoline direct injection spray. P I Mech Eng D-J Aut 218(D9):1041–1053

CrossRefLee CS, Reitz RD (2001) Effect of liquid properties on the breakup mechanism of high-speed liquid drops. Atomization Spray 11:1–19

Li X, Li M, Fu H (2005) Modeling the initial droplet size distribution in sprays based on the maximization of entropy generation. Atomization Spray 15:295–321

CrossRefLiu AB, Mather D, Reitz RD (1993) Modeling the effect of drop drag and breakup on fuel sprays. In: SAE International congress and exposition, SAE 930072

Liu AB, Reitz RD (1993) Mechanisms of air-assisted liquid atomization. Atomization Spray 3:55–75

Liu Z, Reitz RD (1997) An analysis of the distortion and breakup mechanisms of high speed liquid drops. Int J Multiphas Flow 23(4):631–650

MATHCrossRefLópez-Rivera C, Sojka PE (2008) Secondary breakup of non-Newtonian liquid drops. In: ILASS Europe 22nd European conference on liquid atomization and spray dystems, Como Lake, Italy

Matta JE, Tytus RP (1982) Viscoelastic breakup in a high velocity airstream. J Appl Polymer Sci 27:397–405

CrossRefMatta JE, Tytus RP, Harris JL (1983) Aerodynamic atomization of polymeric solutions. Chem Eng Commun 19:191–204

CrossRefMugele RA, Evans HD (1951) Droplet size distribution in sprays. Ind Eng Chem 43:1317–1324

CrossRefNomura K, Koshizuka S, Oka Y, Obata H (2001) Numerical analysis of droplet breakup behavior using particle method. J Nucl Sci Technol 38(12):1057–1064

CrossRefO’Donnell BJ, Helenbrook BT (2005) Drag on ellipsoids at finite Reynolds numbers. Atomization Spray 15:363–375

CrossRefO’Rourke PJ, Amsden AA (1987) The TAB method for numerical calculation of spray droplet breakup. SAE Paper No 872089

Ortiz C, Joseph DD, Beavers GS (2004) Acceleration of a liquid drop suddenly exposed to a high-speed airstream. Int J Multiphas Flow 30:217–224

MATHCrossRefPark JH, Yoon Y, Hwang SS (2002) Improved TAB model for prediction of spray droplet deformation and breakup. Atomization Spray 12:387–401

CrossRefPark SW, Kim S, Lee CS (2006) Effect of mixing ratio of biodiesel on breakup mechanisms of monodispersed droplets. Energy Fuels 20(4):1709–1715

CrossRefPark SW, Lee CS (2004) Investigation of atomization and evaporation characteristics of high-pressure injection diesel spray using Kelvin–Helmholtz instability/droplet deformation and break-up competition model. P I Mech Eng D-J Aut 218:767–777

CrossRefPham TL, Heister SD (2002) Spray modeling using Lagrangian droplet tracking in a homogeneous flow model. Atomization Spray 12:687–707

CrossRefPilch M, Erdman CA (1987) Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int J Multiphase Flow 13(6):741–757

CrossRefPrevish TD, Santavicca DA (1998) Turbulent breakup of hydrocarbon droplets at elevated pressures. In: ILASS Americas, 11th annual conference on liquid atomization and spray systems, Sacramento, CA, USA

Quan S, Schmidt DP (2006) Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow. Phy Fluids 18(10):102103

Ranger AA, Nicholls JA (1969) Aerodynamic shattering of liquid drops. AIAA J 7(2):285–290

CrossRefRayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Philos Magaz 14:184–186

Schmelz F, Walzel P (2003) Breakup of liquid droplets in accelerated gas flows. Atomization Spray 13:357–372

CrossRefSehgal BR, Nourgaliev RR, Dinh TN (1999) Numerical simulation of droplet deformation and break-up by Lattice–Boltzmann method. Prog Nucl Energ 34(4):471–488

CrossRefShibata K, Koshizuka S, Oka Y (2004) Numerical analysis of jet breakup behavior using particle method. J Nucl Sci Technol 41(7):715–722

CrossRefShraiber AA, Podvysotsky AM, Dubrovsky VV (1996) Deformation and breakup of drops by aerodynamic forces. Atomization Spray 6:667–692

Shrimpton JS, Laoonual Y (2006) Dynamics of electrically charged transient evaporating sprays. I J Numer Meth Eng 67:1063–1081

MATHCrossRefSimmons HC (1977a) The correlation of drop-size distributions in fuel nozzle sprays part I: the drop-size/volume-fraction distribution. J Eng Power-T ASME 99(3):309–314

Simmons HC (1977b) The correlation of drop-size distributions in fuel nozzle sprays part II: the drop-size/number distribution. J Eng Power-T ASME 99(3):315–319

Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comp Phys 114:146–159

MATHCrossRefTanner FX (1997) Liquid jet atomization and droplet breakup modeling of non-evaporating diesel fuel sprays. SAE Trans J Eng 106:127–140

Tarnogrodzki A (1993) Theoretical prediction of the critical Weber number. Int J Multiphase Flow 19(2):329–336

MATHCrossRefTaylor GI (1950) The The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. P Royal Soc A Math Phys 201:192–196

MATHCrossRefTaylor GI (1963) The shape and acceleration of a drop in a high-speed air stream. In: Batchelor GK (ed) The scientific papers of GI Taylor, vol III. University Press, Cambridge

Theofanous TG, Li GJ, Dinh TN (2004) Aerobreakup in rarefied supersonic gas flows. J Fluid Eng T ASME 126:516–527

CrossRefTrinh HP, Chen CP (2006) Development of liquid jet atomization and breakup models including turbulence effects. Atomization Spray 16:907–932

CrossRefTrinh HP, Chen CP, Balasubramanyam MS (2007) Numerical simulation of liquid jet atomization including turbulence effects. J Eng Gas Turb Power 129:920–928

CrossRefTryggvason G (1997) Computational investigation of atomization. Contract Number F49620-96-1-0356, Report Number A915353

Wadhwa AR, Abraham J, Magi V (2005) Hybrid compressible-incompressible numerical method for transient drop-gas flows. AIAA J 43(9):1974–1983

CrossRefWadhwa AR, Magi V, Abraham J (2007) Transient deformation and drag of decelerating drops in axisymmetric flows. Phys Fluids 19

Weber C (1931) The breakup of liquid jets. Zeits Angew Math Mech 11:136–154

MATHCrossRefWert KL (1995) A rationally-based correlation of mean fragment size for drop secondary breakup. Int J Multiphase Flow 21(6):1063–1071

MATHCrossRefWierzba A, Takayama K (1988) Experimental investigation of the aerodynamic breakup of liquid drops. AAIA J 26(11):1329–1335

CrossRefWilcox JD, June RK, Brown HA, Kelley RC (1961) The retardation of drop breakup in high-velocity airstreams by polymeric modifiers. J Appl Polymer Sci 5(13):1–6

CrossRefZaleski S, Li J, Succi S (1995) Two-dimensional Navier–Stokes simulation of deformation and breakup of liquid patches. Phys Rev Lett 75(2):244–247

CrossRefZhou W, Zhao T, Wu T, Yu Z (2000) Application of fractal geometry to atomization process. Chem Eng J 78:193–197

CrossRef