, Volume 45, Issue 5, pp 883-898
Date: 01 May 2008

Green water void fraction due to breaking wave impinging and overtopping

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The present study uses laboratory measurements to investigate the void fraction of an overtopping flow on a structure. The overtopping flow, also called green water, was generated by the impingement of a plunging breaking wave on the structure following the Froude similarity of an extreme hurricane wave and a simplified offshore structure. The flow is multi-phased and turbulent with significant aeration. A fiber optic reflectometer (FOR) and bubble image velocimetry (BIV) were employed to measure the void fraction and velocity in the flow, respectively, and to determine the water level on the deck. Mean properties of void fraction and velocity were obtained by ensemble-averaging and time-averaging the repeated instantaneous measurements. The temporal and spatial distributions of void fraction reveal that the flow is very highly aerated near the front of green water and has relatively low aeration near the deck surface. The mean void fraction and velocity distributions were also depth-averaged for simplicity and potential use in engineering applications. Using the measured data, similarity profiles for depth-averaged void fraction, depth-averaged velocity, and water level were found. The study suggests that using only the velocity data is insufficient if the flow momentum or the flow rate is to be determined. The accuracy of the void fraction measurements was validated by comparing the directly measured water volume of the overtopping flow with the calculated water volume based on the measured velocity and void fraction.