, Volume 45, Issue 4, pp 703-713,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 28 Feb 2008

In vivo blood flow and wall shear stress measurements in the vitelline network


The wall shear stress plays a key role in the interaction between blood flow and the surrounding tissue. To obtain quantitative information about this parameter, velocity measurements are required with sufficient spatial (and temporal) resolution. We present a methodology for the determination of the wall shear stress in vivo in the vitelline network of a chick embryo. Velocity data is obtained by microscopic particle image velocimetry using correlation ensemble averaging; the latter is used to increase the signal-to-noise ratio of the measurements. The temporal evolution of the pulsatile flow is reconstructed by sorting the image pairs based on a phase estimate. From these flow measurements, the wall shear stress can be derived either directly from the magnitude of the gradients or from fits to velocity profiles. Both methods give results that are in good agreement with each other, while the former method is significantly easier to implement. For more accurate studies, the full three-dimensional velocity field may be required. It is demonstrated how this velocity field can be obtained by scanning the measurement volume.