, Volume 34, Issue 4, pp 504-514
Date: 05 Mar 2003

Particle imaging techniques for microfabricated fluidic systems

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This paper presents the design and implementation of velocimetry techniques applicable to the analysis of microfluidic systems. The application of both micron-resolution particle image velocimetry (micro-PIV) and particle tracking velocimetry (PTV) to the measurement of velocity fields within micromachined fluidic channels is presented. The particle tracking system uses epifluorescent microscopy, CCD imaging, and specialized image interrogation algorithms to provide microscale velocity measurement resolution. The flow field in a straight channel section is measured using cross-correlation micro-PIV and compared to the analytical solution for a measured mass flow rate. Velocity field measurements of the flow at the intersection of a cross-channel are also presented and compared with simulations from a commercially available flow solver, CFD-ACE+. Discussions regarding flow seeding, imaging optics, and the flow setup for measuring flows in microfabricated fluidic devices are presented. A simple process for estimating measurement uncertainty of the in-plane velocity measurements caused by three-dimensional Brownian motion is described. A definition for the measurement depth for PTV measurements is proposed. The agreement between measured and predicted values lends further support to the argument that liquid microflows with characteristic dimensions of order 50-μm dimension channels follow macroscale flow theory.