, Volume 69, Issue 3, pp 171-202

Laser intracavity absorption spectroscopy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

Emission spectra of multimode lasers are very sensitive to spectrally selective extinction in their cavity. This phenomenon allows the quantitative measurement of absorption. The sensitivity of measurements of intracavity absorption grows with the laser pulse duration. The ultimate sensitivity obtained with a cw laser is set by various perturbations of the light coherence, such as quantum noise, Rayleigh scattering, four-wave mixing by population pulsations, and stimulated Brillouin scattering. It depends on the particular laser type used, and on its operative parameters, for example pump power, cavity loss, cavity length, and length of the gain medium. Nonlinear mode-coupling dominates the dynamics of lasers that feature a thin gain medium, such as dye lasers, whereas Rayleigh scattering is more important in lasers with a long gain medium, such as doped fibre lasers, or the Ti:sapphire laser. The highest sensitivity so far has been obtained with a cw dye laser. It corresponds to 70000 km effective length of the absorption path. The ultimate spectral resolution is determined by the spectral width of mode emission, which is 0.7 Hz in this dye laser. High sensitivity and high temporal and spectral resolution allow various practical applications of laser intracavity spectroscopy, such as measurements and simulations of atmospheric absorption, molecular and atomic spectroscopy, process control, isotope separation, study of free radicals and chemical reactions, combustion diagnostics, spectroscopy of excited states and nonlinear processes, measurements of gain and of spectrally narrow light emission. Intracavity absorption in single-mode lasers shows enhanced sensitivity as well, although not as high as in multimode lasers.

Received: 10 May 1999 / Published online: 29 July 1999