Skip to main content
Log in

Frequency-comb referenced collinear laser spectroscopy of Be+ for nuclear structure investigations and many-body QED tests

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Transition frequencies of the \(2s\,^2{\text{S}}_{1/2} \rightarrow 2p\,^2 {\text{P}}_{1/2,\,3/2}\) transitions in Be\(^+\) were measured in stable and short-lived isotopes at ISOLDE (CERN) using collinear laser spectroscopy and frequency-comb-referenced dye lasers. Quasi-simultaneous measurements in copropagating and counterpropagating geometry were performed to become independent from acceleration voltage determinations for Doppler-shift corrections of the fast ion beam. Isotope shifts and fine-structure splittings were obtained from the transition frequencies measured with a frequency comb with accuracies better than 1 MHz and led to a precise determination of the nuclear charge radii of \(^{7,10-12}\)Be relative to the stable isotope 9Be. Moreover, an accurate determination of the 2p fine-structure splitting allowed a test of high-precision bound-state QED calculations in the three-electron system. Here, we describe the laser spectroscopic method in detail, including several tests that were carried out to determine or estimate systematic uncertainties. Final values from two experimental runs at ISOLDE are presented, and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Nörtershäuser et al., Phys. Rev. Lett. 102, 062503 (2009)

    Article  Google Scholar 

  2. A. Krieger et al., Phys. Rev. Lett. 108, 142501 (2012)

    Article  ADS  Google Scholar 

  3. W. Nörtershäuser et al., Phys. Rev. Lett. 115, 033002 (2015)

    Article  Google Scholar 

  4. R. Neugart, Hyp. Int. 24, 159 (1985)

    Article  ADS  Google Scholar 

  5. E.W. Otten, Nuclear radii and moments of unstable isotopes, in Treatise on Heavy Ion Science, vol. 8, ed. by D.A. Bromley (Plenum Publishing Corp. (Springer), New York, 1989), p. 517

    Chapter  Google Scholar 

  6. J. Billowes, P. Campbell, J. Phys. G 21, 707 (1995)

    Article  ADS  Google Scholar 

  7. R. Neugart, Eur. Phys. J. A 15, 35 (2002)

    Article  ADS  Google Scholar 

  8. R. Neugart, G. Neyens, Lect. Notes Phys. 700, 135 (2006)

    Article  ADS  Google Scholar 

  9. B. Cheal, K. Flanagan, J. Phys. G 37, 113101 (2010)

    Article  ADS  Google Scholar 

  10. K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T152, 014017 (2013)

    Article  ADS  Google Scholar 

  11. P. Campbell, I.D. Moore, M.R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)

    Article  ADS  Google Scholar 

  12. T.P. Dinneen, N. Berrah-Mansour, H.G. Berry, L. Young, R.C. Pardo, Phys. Rev. Lett. 66, 2859 (1991)

    Article  ADS  Google Scholar 

  13. J.K. Thompson, D.J.H. Howie, E.G. Myers, Phys. Rev. A 57, 180 (1998)

    Article  ADS  Google Scholar 

  14. E.G. Myers, H.S. Margolis, J.K. Thompson, M.A. Farmer, J.D. Silver, M.R. Tarbutt, Phys. Rev. Lett. 82, 4200 (1999)

    Article  ADS  Google Scholar 

  15. W. Geithner et al., Phys. Rev. Lett. 83, 3792 (1999)

    Article  ADS  Google Scholar 

  16. K. Marinova et al., Phys. Rev. C 84, 034313 (2011)

    Article  ADS  Google Scholar 

  17. Z.-C. Yan, G.W.F. Drake, Phys. Rev. A 61, 022504 (2000)

    Article  ADS  Google Scholar 

  18. Z.-C. Yan, G.W.F. Drake, Phys. Rev. Lett. 91, 113004 (2003)

    Article  ADS  Google Scholar 

  19. M. Puchalski, A.M. Moro, K. Pachucki, Phys. Rev. Lett. 97, 133001 (2006)

    Article  ADS  Google Scholar 

  20. Z.-C. Yan, W. Nörtershäuser, G.W.F. Drake, Phys. Rev. Lett. 100, 243002 (2008)

    Article  ADS  Google Scholar 

  21. Z.-C. Yan, W. Nörtershäuser, G.W.F. Drake, Phys. Rev. Lett. 102, 249903(E) (2009)

    Article  ADS  Google Scholar 

  22. W. Nörtershäuser et al., Phys. Rev. A 83, 012516 (2011)

    Article  Google Scholar 

  23. K. Pachucki, J. Komasa, Phys. Rev. Lett. 92, 213001 (2004)

    Article  ADS  Google Scholar 

  24. M. Puchalski, K. Pachucki, J. Komasa, Phys. Rev. A 89, 012506 (2014)

    Article  ADS  Google Scholar 

  25. M. Puchalski, J. Komasa, K. Pachucki, Phys. Rev. A 92, 062501 (2015)

    Article  ADS  Google Scholar 

  26. I. Tanihata et al., Phys. Rev. Lett. 55, 2676–2679 (1985)

    Article  ADS  Google Scholar 

  27. L.-B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004)

    Article  ADS  Google Scholar 

  28. P. Müller et al., Phys. Rev. Lett. 99, 252501 (2007)

    Article  Google Scholar 

  29. G. Ewald et al., Phys. Rev. Lett. 93, 113002 (2004)

    Article  ADS  Google Scholar 

  30. R. Sánchez et al., Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  31. T. Nakamura et al., Phys. Rev. A 74, 052503 (2006)

    Article  ADS  Google Scholar 

  32. A. Takamine et al., Eur. Phys. J. A 42, 369 (2009)

    Article  ADS  Google Scholar 

  33. K. Pachucki, V.A. Yerokhin, Phys. Rev. Lett. 104, 070403 (2010)

    Article  ADS  Google Scholar 

  34. M. Puchalski, K. Pachucki, Phys. Rev. Lett. 113, 073004 (2014)

    Article  ADS  Google Scholar 

  35. G.A. Noble, B.E. Schultz, H. Ming, W.A. van Wijngaarden, Phys. Rev. A 74, 012502 (2006)

    Article  ADS  Google Scholar 

  36. C.J. Sansonetti, C.E. Simien, J.D. Gillaspy, J.N. Tan, S.M. Brewer, R.C. Brown, S. Wu, J.V. Porto, Phys. Rev. Lett. 107, 023001 (2011)

    Article  ADS  Google Scholar 

  37. R.C. Brown, S.J. Wu, J.V. Porto, C.J. Sansonetti, C.E. Simien, S.M. Brewer, J.N. Tan, J.D. Gillaspy, Phys. Rev. A 87, 032504 (2013)

    Article  ADS  Google Scholar 

  38. M. Puchalski, K. Pachucki, Phys. Rev. A 78, 052511 (2008)

    Article  ADS  Google Scholar 

  39. Z.T. Lu, P. Mueller, G.W.F. Drake, W. Nörtershäuser, S.C. Pieper, Z.C. Yan, Rev. Mod. Phys. 85, 1383 (2013)

    Article  ADS  Google Scholar 

  40. G.W.F. Drake, Windsor University, Priv. Commun. (2010)

  41. M. Puchalski, K. Pachucki, Hyp. Int. 196, 35 (2010)

    Article  ADS  Google Scholar 

  42. K. Pachucki, Institute of Theoretical Physics, University of Warsaw, Priv. Commun. (2011)

  43. J.A. Jansen, R.T. Peerdeman, C. de Vries, Nucl. Phys. A 188, 337 (1972)

    Article  ADS  Google Scholar 

  44. A. Derevianko, S.G. Porsev, K. Beloy, Phys. Rev. A 78, 010503(R) (2008)

    Article  ADS  Google Scholar 

  45. M. Douglas, N.M. Kroll, Ann. Phys. (N. Y.) 82, 89 (1974)

    Article  ADS  Google Scholar 

  46. M. Puchalski, K. Pachucki, Phys. Rev. A 92, 012513 (2015)

    Article  ADS  Google Scholar 

  47. Z.C. Yan et al., Phys. Rev. A 66(042504), 1–8 (2002)

    Google Scholar 

  48. U. Koester et al., Enam 98 Exot. Nucl. Atomic Masses 455, 989 (1998)

    Article  Google Scholar 

  49. V.N. Fedosseev et al., Nucl. Instrum. Methods B 266, 4378 (2008)

    Article  ADS  Google Scholar 

  50. G. Audi et al., Nucl. Phys. A 624, 1–124 (1997)

    Article  ADS  Google Scholar 

  51. D.C. Fiander et al., in CERN/PS92-38, Proceedings of the of 20th Power Modulator Symposium (1992)

  52. R. Neugart, Nucl. Instrum. Methods 186, 165–175 (1981)

    Article  ADS  Google Scholar 

  53. F. Buchinger et al., Nucl. Instrum. Methods B 202, 159 (1982)

    Article  Google Scholar 

  54. A.C. Müller et al., Nucl. Phys. A 403, 234 (1983)

    Article  Google Scholar 

  55. R. Neugart et al., Nucl. Instrum. Methods B 17, 354 (1986)

    Article  ADS  Google Scholar 

  56. W. Geithner et al., Phys. Rev. C 71, 064319 (2005)

    Article  ADS  Google Scholar 

  57. G. Neyens et al., Phys. Rev. Lett. 94, 022501 (2005)

    Article  ADS  Google Scholar 

  58. M. Kowalska et al., Eur. Phys. J. A 25(s01), 193 (2005)

    Article  Google Scholar 

  59. T. Thümmler et al., New J. Phys. 11, 103007 (2009)

    Article  Google Scholar 

  60. A. Krieger et al., Nucl. Instrum. Methods A 632, 23 (2011)

    Article  ADS  Google Scholar 

  61. O. Poulsen, E. Riis, Metrologia 25, 147 (1988)

    Article  ADS  Google Scholar 

  62. E. Riis, A.G. Sinclair, O. Poulsen, G.W.F. Drake, W.R.C. Rowley, A.P. Levick, Phys. Rev. A 49, 207 (1994)

    Article  ADS  Google Scholar 

  63. Program IodineSpec from Toptica Photonics (2004)

  64. N.I. Ashwood, Phys. Lett. B 580, 129 (2004)

    Article  ADS  Google Scholar 

  65. M. Zakova et al., J. Phys. G 37, 055107 (2010)

    Article  ADS  Google Scholar 

  66. J.J. Bollinger, J.S. Wells, D.J. Wineland, W.M. Itano, Phys. Rev. A 31, 2711 (1985)

    Article  ADS  Google Scholar 

  67. M. Puchalski, K. Pachucki, Phys. Rev. A 79, 032510 (2009)

    Article  ADS  Google Scholar 

  68. https://oraweb.cern.ch/pls/isolde/query_tgt, ISOLDE database (2016)

  69. K. Okada et al., Phys. Rev. Lett. 101, 212502 (2008)

    Article  ADS  Google Scholar 

  70. D.J. Wineland, J.J. Bollinger, W.M. Itano, Phys. Rev. Lett. 50, 628 (1983)

    Article  ADS  Google Scholar 

  71. A. Takamine et al., Phys. Rev. Lett. 112, 162502 (2014)

    Article  ADS  Google Scholar 

  72. I. Sick, Universität Basel, Priv. Commun. (2013)

Download references

Acknowledgements

We acknowledge enlightening discussions with I. Sick about the charge radius of 9Be from elastic electron scattering. This work was supported by the Helmholtz Association (VH-NG 148), the German Ministry for Science and Education (BMBF) under contracts 05P12RDCIC and 05P15RDCIA, the Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program by the State of Hesse, the Max-Planck Society, the European Union 7th Framework through ENSAR, and the BriX IAP Research Program No. P6/23 (Belgium). A. Krieger acknowledges support from the Carl-Zeiss-Stiftung (AZ:21-0563-2.8/197/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Nörtershäuser.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krieger, A., Nörtershäuser, W., Geppert, C. et al. Frequency-comb referenced collinear laser spectroscopy of Be+ for nuclear structure investigations and many-body QED tests. Appl. Phys. B 123, 15 (2017). https://doi.org/10.1007/s00340-016-6579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6579-5

Keywords

Navigation