Skip to main content
Log in

Single telecom photon heralding by wavelength multiplexing in an optical fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate the multiplexing of a weak coherent and a quantum state of light in a single telecommunication fiber. For this purpose, we make use of spontaneous parametric down conversion and quantum frequency conversion to generate photon pairs at 854 nm and the telecom O-band. The herald photon at 854 nm triggers a telecom C-band laser pulse. The telecom single photon (O-band) and the laser pulse (C-band) are combined and coupled to a standard telecom fiber. Low-background time correlation between the weak coherent and quantum signal behind the fiber shows successful multiplexing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Shibata, T. Honjo, K. Shimizu, Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors. Opt. Lett. 39, 5078–5081 (2014)

    Article  ADS  Google Scholar 

  2. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue, Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)

    Article  ADS  Google Scholar 

  3. H. Takesue, S. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343–348 (2007)

    Article  ADS  Google Scholar 

  4. M. Peev, C. Pacher, R. Alleaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legre, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A.W. Sharpe, A.J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R.T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z.L. Yuan, H. Zbinden, A. Zeilinger, The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)

    Article  ADS  Google Scholar 

  5. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J.F. Dynes, A.R. Dixon, A.W. Sharpe, Z.L. Yuan, A.J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011)

    Article  ADS  Google Scholar 

  6. A. Rubenok, J.A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel, Real-world two-photon interference and proof-of-principle quantum key distribution Immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)

    Article  ADS  Google Scholar 

  7. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Violation of bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)

    Article  ADS  Google Scholar 

  8. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    Article  ADS  Google Scholar 

  9. C.H. Bennett, G. Brassard, in International Conference on Computers, Systems and Signal Processing (Bangalore, 1984), pp. 175–179

  10. P.D. Townsend, Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electr. Lett. 33, 188–190 (1997)

    Article  Google Scholar 

  11. T.E. Chapuran, P. Toliver, N.A. Peters, J. Jackel, M.S. Goodman, R.J. Runser, S.R. McNown, N. Dallmann, R.J. Hughes, K.P. McCabe, J.E. Nordholt, C.G. Peterson, K.T. Tyagi, L. Mercer, H. Dardy, Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009)

    Article  ADS  Google Scholar 

  12. M.A. Hall, J.B. Altepeter, P. Kumar, Drop-in compatible entanglement for optical-fiber networks. Opt. Express 17, 14558–14566 (2009)

    Article  ADS  Google Scholar 

  13. S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, G. Franzl, Perspectives and limitations of QKD integration in metropolitan area networks. Opt. Express 23, 10359–10373 (2015)

    Article  ADS  Google Scholar 

  14. International Telecommunication Union, Spectral grids for WDM applications: DWDM frequency grid, ITU-T G.694.1, version 02/2012

  15. Z.Y. Ou, Efficient conversion between photons and between photon and atom by stimulated emission. Phys. Rev. A 78, 023819 (2008)

    Article  ADS  Google Scholar 

  16. S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)

    Article  ADS  Google Scholar 

  17. S. Blum, G.A. Olivares-Renteria, C. Ottaviani, C. Becher, G. Morigi, Single-photon frequency conversion in nonlinear crystals. Phys. Rev. A 88, 053807 (2013)

    Article  ADS  Google Scholar 

  18. M. Bock, A. Lenhard, C. Becher, A highly efficient heralded single photon source for telecom wavelengths based on a PPLN ridge waveguide (2016) (Manuscript in preparation)

  19. Corning SMF-28e+ Optical Fiber with NexCor Technology—Product Information, Document PI1463, December 2007, Corning Inc

  20. C. Ho, A. Lamas-Linares, C. Kurtsiefer, Clock synchronization by remote detection of correlated photon pairs. New J. Phys. 11, 045011 (2009)

    Article  ADS  Google Scholar 

  21. N. Piro, A. Haase, M.W. Mitchell, J. Eschner, An entangled photon source for resonant single-photon-single-atom interaction. J. Phys. B At. Mol. Opt. Phys. 42, 114002 (2009)

    Article  ADS  Google Scholar 

  22. N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, J. Eschner, Heralded single-photon absorption by a single atom. Nat. Phys. 7, 17–20 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded by the German Federal Ministry of Science and Education (BMBF) within the projects “Q.com-Q” (Contract No. 16KIS0127). J. Brito acknowledges support by CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Becher.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenhard, A., Brito, J., Kucera, S. et al. Single telecom photon heralding by wavelength multiplexing in an optical fiber. Appl. Phys. B 122, 20 (2016). https://doi.org/10.1007/s00340-015-6284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6284-9

Keywords

Navigation