Skip to main content
Log in

Assessment of soot particle-size imaging with LII at Diesel engine conditions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two-time-step laser-induced incandescence (LII) imaging was performed in Diesel engine-relevant combustion to investigate its applicability for spatially resolved measurements of soot primary particle sizes. The method is based on evaluating gated LII signals acquired with two cameras consecutively after the laser pulse and using LII modeling to deduce the particle size from the ratio of local signals. Based on a theoretical analysis, optimized detection times and durations were chosen to minimize measurement uncertainties. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel under the Engine Combustion Network’s “Spray A” conditions at 61–68 bar with additional parametric variations in injection pressure, gas temperature, and composition. The LII measurements were supported by pyrometric imaging measurements of particle heat-up temperatures. The results were compared to particle-size and size-dispersion measurements from transmission electron microscopy of soot thermophoretically sampled at multiple axial distances from the injector. The discrepancies between the two measurement techniques are discussed to analyze uncertainties and related error sources of the two diagnostics. It is found that in such environment where particles are small and pressure is high, LII signal decay times are such that LII with standard nanosecond laser and detector equipment suffers from a strong bias toward large particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. International Council on Clean Transportation (ICCT), Pocketbook: European Vehicle Market Statistics (Berlin, 2013)

  2. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44, 6773–6785 (2005)

    Article  ADS  Google Scholar 

  3. J.C. Chow, J.G. Watson, J.L. Mauderly, D.L. Costa, R.E. Wyzga, S. Vedal, G.M. Hidy, S.L. Altshuler, D. Marrack, J.M. Heuss, G.T. Wolff, C. Arden Pope III, D.W. Dockery, J. Air Waste Manag. Assoc. 56, 1368–1380 (2006)

    Article  Google Scholar 

  4. V. Ramanathan, G. Carmichael, Nat. Geosci. 4, 221–227 (2008)

    Article  ADS  Google Scholar 

  5. L.A. Melton, Appl. Opt. 23, 2201–2208 (1984)

    Article  ADS  Google Scholar 

  6. C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  7. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503–521 (2007)

    Article  ADS  Google Scholar 

  8. B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775–2782 (2002)

    Article  Google Scholar 

  9. S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277–2284 (1996)

    Article  Google Scholar 

  10. B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Phys. B 72, 367–372 (2001)

    Article  ADS  Google Scholar 

  11. B.C. Connelly, Quantitative Characterization of Steady and Time-Varying, Sooting, Laminar Diffusion Flames Using Optical Techniques, PhD thesis (Yale University, New Haven, 2009)

  12. Z. Sun, D.H. Gu, G.J. Nathan, Z.T. Alwahabi, B.B. Dally, Proc. Combust. Inst. 35, 3673–3680 (2015)

    Article  Google Scholar 

  13. J. Reimann, S.-A. Kuhlmann, S. Will, Appl. Phys. B 96, 583–592 (2009)

    Article  ADS  Google Scholar 

  14. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B (2015). doi:10.1007/s00340-015-6009-0

    Google Scholar 

  15. M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629–639 (2007)

    Article  ADS  Google Scholar 

  16. M. Hofmann, B.F. Kock, C. Schulz, in European Combustion Meeting 2007, Chania, (2007)

  17. L.M. Pickett, C.L. Genzale, G. Bruneaux, L.M. Malbec, L. Hermant, C. Christiansen, J. Schramm, SAE Int. J. Engines 3, 156–181 (2010)

    Google Scholar 

  18. E. Cenker, G. Bruneaux, L.M. Pickett, C. Schulz, SAE Int. J. Engines 6, 352–365 (2013)

    Article  Google Scholar 

  19. L.M. Malbec, J. Egúsquiza, G. Bruneaux, M. Meijer, SAE Int. J. Engines 6, 1642–1660 (2013)

    Article  Google Scholar 

  20. L.M. Pickett, http://www.sandia.gov/ecn/index.php

  21. M. Hofmann, W.G. Bessler, C. Schulz, H. Jander, Appl. Opt. 42, 2052–2062 (2003)

    Article  ADS  Google Scholar 

  22. H.A. Michelsen, J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  23. H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, P.-E. Bengtsson, Proc. Combust. Inst. 33, 641–648 (2011)

    Article  Google Scholar 

  24. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118, 169–183 (2015)

    Article  ADS  Google Scholar 

  25. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709–717 (1997)

    Article  ADS  Google Scholar 

  26. B.B. Collier, M.J. McShane, Anal. Chem. 84, 4725–4731 (2012)

    Article  Google Scholar 

  27. A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, J. Bood, Opt. Express 20, 3043–3056 (2012)

    Article  ADS  Google Scholar 

  28. H.C. Hottel, F.P. Broughton, Ind. Eng. Chem. 4, 166–174 (1932)

    Google Scholar 

  29. Y.A. Levendis, K.R. Estrada, H.C. Hottel, Rev. Sci. Instrum. 63, 3608–3621 (1992)

    Article  ADS  Google Scholar 

  30. H. Zhao, N. Ladommatos, Prog. Energy Combust. Sci. 24, 221–255 (1998)

    Article  Google Scholar 

  31. F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623–636 (2009)

    Article  ADS  Google Scholar 

  32. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439–450 (2000)

    Article  Google Scholar 

  33. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180–190 (2004)

    Article  Google Scholar 

  34. B. Bougie, L.C. Ganippa, A.P. van Vliet, W.L. Meerts, N.J. Dam, J.J. ter Meulen, Proc. Combust. Inst. 31, 685–691 (2007)

    Article  Google Scholar 

  35. B. Bougie, L.C. Ganippa, N.J. Dam, J.J. ter Meulen, Appl. Phys. B 83, 477–485 (2006)

    Article  ADS  Google Scholar 

  36. T. Dreier, B. Bougie, N. Dam, T. Gerber, Appl. Phys. B 83, 403–411 (2006)

    Article  ADS  Google Scholar 

  37. M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B 104, 427–438 (2011)

    Article  ADS  Google Scholar 

  38. H.A. Michelsen, Appl. Phys. B 83, 443–448 (2006)

    Article  ADS  Google Scholar 

  39. M. Meijer, B. Somers, J. Johnson, J. Naber, S.-Y. Lee, L.-M. Malbec, G. Bruneaux, L.M. Pickett, M. Bardi, R. Payri, T. Bazyn, At. Sprays 22, 777–806 (2012)

    Article  Google Scholar 

  40. G. Tea, G. Bruneaux, J.T. Kashdan, C. Schulz, Proc. Combust. Inst. 33, 783–790 (2011)

    Article  Google Scholar 

  41. R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203–218 (1983)

    Article  Google Scholar 

  42. S. Kook, L.M. Pickett, Proc. Combust. Inst. 33, 2911–2918 (2011)

    Article  Google Scholar 

  43. T. Aizawa, H. Nishigai, K. Kondo, T. Yamaguchi, J.-G. Nerva, C. Genzale, S. Kook, L.M. Pickett, SAE Int. J. Fuels Lubr. 5, 665–673 (2012)

    Article  Google Scholar 

  44. K. Kondo, J. Takahashi, T. Aizawa, SAE Int. J. Fuels Lubr. 7, 683–692 (2014)

    Article  Google Scholar 

  45. K. Kondo, T. Aizawa, S. Kook, L.M. Pickett, SAE Technical Paper 2013–01–0908 (2013)

  46. M.P.B. Musculus, S. Singh, R.D. Reitz, Combust. Flame 153, 216–227 (2008)

    Article  Google Scholar 

  47. L.M. Pickett, D.L. Siebers, Int. J. Engine Res. 7, 103–130 (2006)

    Article  Google Scholar 

  48. L.M. Pickett, J. Manin, C.L. Genzale, D. Siebers, M.P.B. Musculus, C.A. Idicheria, SAE Int. J. Engines 4, 764–799 (2011)

    Article  Google Scholar 

  49. M. Bolla, Y.M. Wright, K. Boulouchos, G. Borghesi, E. Mastorakos, Combust. Sci. Technol. 185, 766–793 (2013)

    Article  Google Scholar 

  50. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79–92 (2006)

    Article  Google Scholar 

  51. J. Johnsson, H. Bladh, P.-E. Bengtsson, Appl. Phys. B 99, 817–823 (2010)

    Article  ADS  Google Scholar 

  52. S. Kook, R. Zhang, K. Szeto, L.M. Pickett, T. Aizawa, SAE Int. J. Fuels Lubr. 6, 80–97 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Clement Bramoulle at IFPEN for experimental assistance. The authors are grateful to Hideyuki Yoshimura of Department of Physics, Meiji University, for providing the TEM. The authors also thank Kei Okabe, Kota Suzuki, Hiroyuki Takano, Junya Takahashi, and Yuki Hattori for their assistance in TEM analysis. Thomas Dreier and Christof Schulz acknowledge support from the German Science Foundation, DFG, through SCHU1369/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cenker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cenker, E., Kondo, K., Bruneaux, G. et al. Assessment of soot particle-size imaging with LII at Diesel engine conditions. Appl. Phys. B 119, 765–776 (2015). https://doi.org/10.1007/s00340-015-6106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6106-0

Keywords

Navigation