Skip to main content
Log in

How bosonic is a pair of fermions?

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Composite particles made of two fermions can be treated as ideal elementary bosons as long as the constituent fermions are sufficiently entangled. In that case, the Pauli principle acting on the parts does not jeopardise the bosonic behaviour of the whole. An indicator for bosonic quality is the composite boson normalisation ratio \(\chi _{N+1}/\chi _{N}\) of a state of \(N\) composites. This quantity is prohibitively complicated to compute exactly for realistic two-fermion wavefunctions and large composite numbers \(N\). Here, we provide an efficient characterisation in terms of the purity \(P\) and the largest eigenvalue \(\lambda _1\) of the reduced single-fermion state. We find the states that extremise \(\chi _N\) for given \(P\) and \(\lambda _1\), and we provide easily evaluable, saturable upper and lower bounds for the normalisation ratio. Our results strengthen the relationship between the bosonic quality of a composite particle and the entanglement of its constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In our context, a state of two indistinguishable fermions can always be mapped formally onto distinguishable fermions [24]. Our subsequent discussion therefore applies to distinguishable and indistinguishable fermions in a similar fashion. For composites made of two bosons, however, we expect differences between distinguishable and indistinguishable bosons due to multiply populated single-boson states [23].

References

  1. ALICE Collaboration. Two-pion Bose-Einstein correlations in pp collisions at sqrt\([{\rm s}]\)=900 GeV. Phys. Rev. D 82, 052001 (2010)

  2. M. Zwierlein, C. Stan, C. Schunck, S. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Observation of Bose-Einstein condensation of molecules. Phys. Rev. Lett. 91, 250401 (2003)

    Article  ADS  Google Scholar 

  3. C.K. Law, Quantum entanglement as an interpretation of bosonic character in composite two-particle systems. Phys. Rev. A 71, 034306 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. M.C. Tichy, F. Mintert, A. Buchleitner, Essential entanglement for atomic and molecular physics. J. Phys. B At. Mol. Opt. Phys 44, 192001 (2011)

    Article  ADS  Google Scholar 

  6. S. Rombouts, D.V. Neck, K. Peirs, L. Pollet, Maximum occupation number for composite boson states. Mod. Phys. Lett. A17, 1899 (2002)

    Article  ADS  Google Scholar 

  7. P. Sancho, Compositeness effects, Pauli’s principle and entanglement. J. Phys. A Math. Theor. 39, 12525 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. A. Gavrilik, Y.A. Mishchenko, Entanglement in composite bosons realized by deformed oscillators. Phys. Lett. A 376, 1596 (2012)

    Article  ADS  MATH  Google Scholar 

  9. A.M. Gavrilik, Y.A. Mishchenko, Energy dependence of the entanglement entropy of composite boson (quasiboson) systems. J. and. Phys. A Math. Theor. 46, 145301 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Combescot, Commutator formalism for pairs correlated through Schmidt decomposition as used in quantum information. Europhys. Lett. 96, 60002 (2011)

    Article  ADS  Google Scholar 

  11. M. Combescot, X. Leyronas, C. Tanguy, On the N-exciton normalization factor. Europ. Phys. J. B 31, 17 (2003)

    Article  ADS  Google Scholar 

  12. C. Chudzicki, O. Oke, W.K. Wootters, Entanglement and composite bosons. Phys. Rev. Lett. 104, 070402 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Ramanathan, P. Kurzynski, T. Chuan, M. Santos, D. Kaszlikowski, Criteria for two distinguishable fermions to form a boson. Phys. Rev. A 84, 034304 (2011)

    Article  ADS  Google Scholar 

  14. S.S. Avancini, J.R. Marinelli, G. Krein, Compositeness effects in the Bose-Einstein condensation. J. Phys. A: Math. Theor. 36, 9045 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. M.C. Tichy, P.A. Bouvrie, K. Mølmer, Collective interference of composite Two-Fermion bosons. Phys. Rev. Lett. 109, 260403 (2012)

    Article  ADS  Google Scholar 

  16. P. Kurzyński, R. Ramanathan, A. Soeda, T.K. Chuan, D. Kaszlikowski, Particle addition and subtraction channels and the behavior of composite particles. New J. Phys. 14, 093047 (2012)

    Article  ADS  Google Scholar 

  17. S.-Y. Lee, J. Thompson, P. Kurzynski, A. Soeda, D. Kaszlikowski, Coherent states of composite bosons. Phys. Rev. A 88, 063602 (2013)

    Article  ADS  Google Scholar 

  18. T.K. Chuan, D. Kaszlikowski, Composite particles and the Szilard engine. arxiv 1308. 1525 (2013)

    ADS  Google Scholar 

  19. T. Brougham, S.M. Barnett, I. Jex, Interference of composite bosons. J. Mod. Opt. 57, 587 (2010)

    Article  ADS  MATH  Google Scholar 

  20. M. Combescot, F. Dubin, M. Dupertuis, Role of Fermion exchanges in statistical signatures of composite bosons. Phys. Rev. A 80, 013612 (2009)

    Article  ADS  Google Scholar 

  21. A. Thilagam, Binding energies of composite boson clusters using the Szilard engine. arXiv prepr. arXiv 1309. 6493 (2013)

    ADS  Google Scholar 

  22. Y. Pong, C. Law, Bosonic characters of atomic Cooper pairs across resonance. Phys. Rev. A 75, 043613 (2007)

    Article  ADS  Google Scholar 

  23. M.C. Tichy, P.A. Bouvrie, K. Mølmer, Two-boson composites. Phys. Rev. A 88, 061602(R) (2013)

    Article  ADS  Google Scholar 

  24. M.C. Tichy, P.A. Bouvrie, K. Mølmer, Bosonic behavior of entangled fermions. Phys. Rev. A 86, 042317 (2012)

    Article  ADS  Google Scholar 

  25. D. Bernstein, Matrix mathematics: theory, facts, and formulas (Princeton University Press, Princeton, 2009)

    Google Scholar 

  26. M. Combescot, O. Betbeder-Matibet, F. Dubin, The many-body physics of composite bosons. Phys. Rep. 463, 215 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. I.G. Macdonald, Symmetric functions and hall polynomials (Clarendon Press, Oxford, 1995)

    MATH  Google Scholar 

  28. A. Thilagam, Crossover from bosonic to fermionic features in composite boson systems. J. Math. Chem. 51, 1897 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Grobe, K. Rzazewski, J.H. Eberly, Measure of electron-electron correlation in atomic physics. J. Phys. B At. Mol. Opt. Phys 27, L503 (1994)

    Article  ADS  Google Scholar 

  30. T.-C. Wei, P.M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  31. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST handbook of mathematical functions (Cambridge University Press, New York, NY, 2010)

    MATH  Google Scholar 

  32. A.G. Munford, A note on the uniformity assumption in the birthday problem. Am. Stat. 31, 119 (1977)

    MathSciNet  Google Scholar 

  33. M. Combescot, D. Snoke, Stability of a Bose-Einstein condensate revisited for composite bosons. Phys. Rev. B 78, 144303 (2008)

    Article  ADS  Google Scholar 

  34. N. Zinner, A. Jensen, Nuclear \(\alpha \)-particle condensates: definitions, occurrence conditions, and consequences. Phys. Rev. C 78, 041306 (2008)

    Article  ADS  Google Scholar 

  35. Y. Funaki, H. Horiuchi, W. von Oertzen, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada, Concepts of nuclear \(\alpha \)-particle condensation. Phys. Rev. C 80, 064326 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Florian Mintert, Łukasz Rudnicki, Alagu Thilagam and Nikolaj Th. Zinner for stimulating discussions, and Christian K. Andersen, Durga Dasari, Jake Gulliksen, Pinja Haikka, David Petrosyan and Andrew C. J. Wade for valuable feedback on the manuscript. M.C.T. gratefully acknowledges support by the Alexander von Humboldt-Foundation through a Feodor Lynen Fellowship. K.M. gratefully acknowledges support by the Villum Foundation. P.A.B. gratefully acknowledges support by the Progama de Movilidad Internacional CEI BioTic en el marco PAP-Erasmus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte C. Tichy.

Appendices

Appendix 1: Minimising distribution

For completeness, we reproduce the proofs from the Appendix of Ref. [24] in the Appendices 1 and 2, adapting the argument to our situation in which not only the purity \(P\) is fixed, but also the largest Schmidt coefficient \(\lambda_1\).

1.1 Uniforming operation

Following an analysis of the birthday problem with non-uniform birthday probabilities [32], we define a uniforming operation \(\varGamma ^{u}\) on the distribution \(\varvec{\Lambda }\) that can modify three selected \(\lambda _j\) with indices \({2 \le j_1 < j_2 < j_3 \le S}\) (i.e. the operation never acts on the first Schmidt coefficient \(\lambda _1\), since its value is fixed, by assumption). We will show that this operation always decreases \(\chi _N\), and specify the distribution \(\varvec{\Lambda }_{\text {min}}(P, \lambda _1)\) that remains invariant under the application of \(\varGamma ^u\). This distribution thus minimises \(\chi _N^{\varvec{\Lambda }}\) under the constraints \((P,\lambda _1)\).

The operation \(\varGamma ^u\) modifies three coefficients in a distribution,

$$\begin{aligned} \varGamma ^u: ( \lambda _{j_1}, \lambda _{j_2},\lambda _{j_3} ) \rightarrow ( \lambda ^u_{j_1}, \lambda ^u_{j_2},\lambda ^u_{j_3} ) , \end{aligned}$$
(50)

such that it leaves

$$\begin{aligned} K_1&= \lambda _{j_1} + \lambda _{j_2} + \lambda _{j_3} , \nonumber \\ K_2&= \lambda _{j_1}^2 + \lambda _{j_2}^2 + \lambda _{j_3}^2 , \end{aligned}$$
(51)

invariant, and, consequently, also \(\sum _{j} \lambda _j=1\) and \(\sum _j \lambda _j^2=P\). The third power sum, \(M(3)=\sum _j \lambda _j^3\), on the other hand, is changed by \(\varGamma ^u\). Specifically,

$$\begin{aligned} \lambda _{j_1}^u = \lambda _{j_2}^u&= \frac{1}{6} \left( 2 K_1 + \sqrt{6 K_2-2 K_1^2} \right) \nonumber ,\\ \lambda _{j_3}^u&= \frac{1}{3} \left( K_1 - \sqrt{6 K_2-2 K_1^2} \right) . \end{aligned}$$
(52)

In the case \(K_1^2 <2 K_2\), in order to avoid \(\lambda _{j_3}^u<0\), we need to set

$$\begin{aligned} \lambda _{j_1/j_2}^u&= \frac{1}{2} \left( K_1 \pm \sqrt{2 K_2-K_1^2}\right) , \\ \lambda _{j_3}^u&= 0 \nonumber . \end{aligned}$$
(53)

1.1.1 The product \(\lambda _{j_1} \lambda _{j_2}\lambda _{j_3}\) decreases under \(\varGamma ^u\)

It holds

$$\begin{aligned} \lambda _{j_1}^u \lambda _{j_2}^u \lambda _{j_3}^u \le \lambda _{j_1} \lambda _{j_2} \lambda _{j_3} . \end{aligned}$$
(54)

Proof

We write the left- and right-hand side of (54) in terms of \(K_1, K_2\) and \(\lambda _{j_1}\)

$$\begin{aligned}&\lambda _{j_1}^u \lambda _{j_2}^u \lambda _{j_3}^u \nonumber \\&\quad = \left\{ \begin{array}{ll} \frac{1}{108} \left( K_1-\sqrt{6 K_2-2 K_1^2}\right) &{} \\ \times \left( 2 K_1+\sqrt{6 K_2-2 K_1^2}\right) ^2 &{}\hbox { for } K_1^2 > 2 K_2 \\ 0 &{}\hbox { for } K_1^2 \le 2 K_2 \end{array} \right. \\&\lambda _{j_1} \lambda _{j_2} \lambda _{j_3}= \frac{1}{2} \lambda _{j_1} \left( 2 \lambda _{j_1}^2-2 \lambda _{j_1} K_1+K_1^2-K_2 \right) \nonumber \end{aligned}$$
(55)

Given \(K_1\) and \(K_2\), the original \(\lambda_{j_2/j_3}\) become functions of \(\lambda _{_1},\)

$$\begin{aligned} \lambda _{{j_2}/{j_3}} = \frac{1}{2} \left( K_1 - \lambda _{j_1} \pm \sqrt{2 \lambda _{j_1} K_1 - K_1^2 - 3 \lambda _{j_1}^2 + 2 K_2} \right) \nonumber \end{aligned}$$
(56)

The requirement \(\lambda _{j_1} \ge \lambda _{{j_2}} \ge \lambda _{{j_3}} \ge 0\) imposes

$$\begin{aligned} \frac{ K_1}{3} + \frac{ \sqrt{3 K_2 - K_1^2}}{3\sqrt{2}}&\le \lambda _{j_1} \le \frac{ K_1}{3} +\frac{ \sqrt{6 K_2 -2 K_1^2} }{3}. \end{aligned}$$
(57)

The values of \(\lambda _{j_1}\) constrained to this interval then always fulfil Eq. (54). \(\square \)

1.1.2 \(\chi _N^{\varvec{\Lambda }}\) decreases upon application of \(\varGamma ^u\)

Upon application of \(\varGamma ^u\), the normalisation constant \(\chi _N\) and the normalisation ratio \(\chi _{N+1}/\chi _N\) can only decrease:

$$\begin{aligned} \chi _{N}^{\varGamma ^{u}(\varvec{\Lambda }) }&\le \chi _{N}^{\varvec{\Lambda }} , \end{aligned}$$
(58)
$$\begin{aligned} \frac{\chi _{N+1}^{\varGamma ^{u}(\varvec{\Lambda }) } }{\chi _{N}^{\varGamma ^{u}(\varvec{\Lambda }) } }&\le \frac{ \chi _{N+1}^{\varvec{\Lambda }} }{ \chi _{N}^{\varvec{\Lambda }}} . \end{aligned}$$
(59)

To ease notation in the following, we exemplarily use \(j_1=2,\, j_2=3,\, j_3=4\), and set

$$\begin{aligned} {\tilde{\chi }}_N&= \chi _N^{(\lambda _1, \lambda _5, \ldots , \lambda _S)}, \end{aligned}$$
(60)

which allows us to write \(\chi _N\) as

$$\begin{aligned} \chi _N&= \lambda _2 \lambda _3 \lambda _4 \cdot {\tilde{\chi }}_{N-3} +(\lambda _2 \lambda _3 +\lambda _4 \lambda _3+\lambda _2 \lambda _4) {\tilde{\chi }}_{N-2} \nonumber \\&+(\lambda _2+\lambda _3+\lambda _4) {\tilde{\chi }}_{N-1}+ {\tilde{\chi }}_{N} . \end{aligned}$$
(61)

The terms

$$\begin{aligned} \lambda _2 \lambda _3 +\lambda _4 \lambda _3 +\lambda _2 \lambda _4&= \frac{1}{2} \left( K_1^2 - K_2 \right) , \\ \lambda _2+\lambda _3+\lambda _4&= K_1 , \end{aligned}$$
(62)

and \({{\tilde{\chi }}}_k \in \{ N-3, \dots , N \}\) remain invariant under the application of \(\varGamma ^{u}\), whereas the product \( \lambda _2 \lambda _3 \lambda _4\) decreases, due to Eq. (54). Consequently, also \(\chi _N^{{\boldsymbol\Lambda }}\) decreases upon the application of \(\varGamma ^u\).

Using \(\chi _{N+1} \le \chi _{N}\), one can easily show in analogy to Ref. [24] that the inequality (58) is inherited by the normalisation ratio (59). \(\square \)

1.2 Properties of the minimising distribution

The distribution \(\varvec{\Lambda }_{\text {min}}(P,\lambda _1)\) that minimises \(\chi _N\) for fixed \(\lambda _1\) and \(P\) should remain invariant under the application of \(\varGamma ^u\), for all choices of \(2 \le j_1, j_2, j_3 \le S\). By the definition of \(\varGamma ^u\), we see that any three coefficients with \(\lambda _{j_1} > \lambda _{j_2} = \lambda _{j_3}\) never constitute a fixed point of \(\varGamma ^u\). Therefore, the invariant distribution is of the form

$$\begin{aligned} \lambda _1 \ge \lambda _2=\ldots = \lambda _{S-1} \ge \lambda _S . \end{aligned}$$
(63)

It coincides with the distribution found in Ref. [23].

Appendix 2: Maximising distribution

1.1 Peaking operation

With \(K_1\) and \(K_2\) defined as in Eq. (51) above, we define the peaking operation \(\varGamma ^p\) as follows [24]: For \(K_1+\sqrt{6 K_2-2K_1^2} \le 3 \lambda _1\), we set

$$\begin{aligned} \lambda _{j_1}^{p}&= \frac{1}{3} \left( K_1 + \sqrt{6 K_2-2 K_1^2} \right) , \nonumber \\ \lambda _{j_2}^{p}=\lambda _{j_3}^{p}&= \frac{1}{6} \left( 2 K_1 - \sqrt{6 K_2-2 K_1^2} \right) . \end{aligned}$$
(64)

If \(K_1+\sqrt{6 K_2-2K_1^2} > 3 \lambda _1\), the above definition leads to \(\lambda _{j_1}^{p}> \lambda _1\), which we excluded by assumption. In this case, we define alternatively

$$\begin{aligned} \lambda _{j_1}^{p}&= \lambda _1, \\ \lambda _{j_2/j_3}^{p}&= \frac{ K_1 - \lambda _1 \pm \sqrt{2 (K_2 -\lambda _1^2) -(K_1-\lambda _1)^2 } }{{2}} , \nonumber \end{aligned}$$
(65)

for which \(\lambda _1 = \lambda _{j_1}^p \ge \lambda _{j_2}^p \ge \lambda _{j_3}^p \ge 0 \). In full analogy to the discussion in Appendix 1, one shows that

$$\begin{aligned} \chi _N^{\varvec{\Lambda }} \le \chi _N^{\varGamma ^p(\varvec{\Lambda })} , \qquad \frac{\chi _{N+1}^{\varvec{\Lambda }} }{\chi _N^{\varvec{\Lambda }} } \le \frac{\chi _{N+1}^{\varGamma ^p(\varvec{\Lambda })} }{\chi _N^{\varGamma ^p(\varvec{\Lambda })} } , \end{aligned}$$
(66)

i.e. the normalisation factor and ratio increase under the application of \(\varGamma ^p\).

1.2 Properties of the maximising distribution

The distribution \(\varvec{\Lambda }_{\text {max}}(P,\lambda _1)\) that maximises \(\chi _N\) for fixed \(\lambda _1\) and \(P\) is obtained as follows: We maximise the multiplicity of \(\lambda _1\) in \(\varvec{\Lambda }\), i.e. \(\lambda _1\) is repeated \(L-1\) times, with \(L=\lceil P/\lambda _1^2 \rceil \). The coefficients then need to fulfil

$$\begin{aligned} \lambda _1=\ldots = \lambda _{L-1} \ge \lambda _L \ge \lambda _{L+1}&= \ldots = \lambda _S , \end{aligned}$$
(67)

to ensure that \(\varvec{\Lambda }_{\text {max}}(P,\lambda _1)\) be a fixed point of \(\varGamma ^p\). Again, the distribution coincides with the one found in Ref. [23].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tichy, M.C., Bouvrie, P.A. & Mølmer, K. How bosonic is a pair of fermions?. Appl. Phys. B 117, 785–796 (2014). https://doi.org/10.1007/s00340-014-5819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5819-9

Keywords

Navigation