Skip to main content
Log in

Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry–Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured −125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Armano et al., LISA Pathfinder: the experiment and the route to LISA. Class. Quantum Gravity 26(9), 094001 (2009)

    Article  ADS  Google Scholar 

  2. S. Weyers, B. Lipphardt, H. Schnatz, Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser. Phys. Rev. A 79, 031803 (2009)

    Article  ADS  Google Scholar 

  3. J. Millo, M. Abgrall, M. Lours, E.M.L. English, H. Jiang, J. Guéna, A. Clairon, S. Bize, Y. Le Coq, G. Santarelli, M.E. Tobar, Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Appl. Phys. Lett. 94, 141105 (2009)

    Article  ADS  Google Scholar 

  4. J.G. Hartnett, N.R. Nand, E.N. Ivanov, G. Santarelli, Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator. IEEE Trans. Microw. Theory Tech. 59, 2978 (2011)

    Article  ADS  Google Scholar 

  5. J.G. Hartnett, N.R. Nand, C. Lu, Ultra-low-phase-noise cryocooled microwave dielectric-sapphire-resonator oscillators. Appl. Phys. Lett. 100, 183501 (2012)

    Article  ADS  Google Scholar 

  6. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006)

    Article  ADS  Google Scholar 

  7. J. Ye, J.L. Hall, S.A. Diddams, Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum. Opt. Lett. 25(22), 1675–1677 (2000)

    Article  ADS  Google Scholar 

  8. B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82(19), 3799–3802 (1999)

    Article  ADS  Google Scholar 

  9. J. Millo, D.Y. Magalhães, C. Mandasche, Y. Le Coq, E.M.L. English, P.G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, G. Santarelli, Ultra-stable lasers based on vibration insensitive cavities. Phys. Rev. A 77(3), 033847 (2008)

    Article  Google Scholar 

  10. A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15. Opt. Lett. 32(6), 641–643 (2007)

    Article  ADS  Google Scholar 

  11. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen, J. Ye, A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 6, 687–692 (2012)

    Article  ADS  Google Scholar 

  12. T.M. Fortier, M.S. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C.W. Oates, S.A. Diddams, Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 5, 425–429 (2011)

    Article  ADS  Google Scholar 

  13. J. Millo, M. Abgrall, M. Lours, E.M.L. English, H. Jiang, J. Guéna, A. Clairon, S. Bize, Y. Le Coq, G. Santarelli, Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock. Appl. Phys. Lett. 94, 141105 (2009)

    Article  ADS  Google Scholar 

  14. F. Quinlan, T.M. Fortier, M.S. Kirchner, J.A. Taylor, M.J. Thorpe, N. Lemke, A.D. Ludlow, Y. Jiang, S.A. Diddams, Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider. Opt. Lett. 36, 3260–3262 (2011)

    Article  ADS  Google Scholar 

  15. W. Zhang, Z. Xu, M. Lours, R. Boudot, Z. Kersal, A.N. Luiten, Y. Le Coq, G. Santarelli, Advanced noise reduction techniques for ultra-low noise optical-to-microwave division with femtosecond fiber combs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 900–908 (2011)

    Article  Google Scholar 

  16. D.D. Hudson, K.W. Holman, R.J. Jones, S.T. Cundiff, J. Ye, D.J. Jones, Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. Opt. Lett. 30(21), 2948–2950 (2005)

    Article  ADS  Google Scholar 

  17. T.K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C.H. Nam, J. Kim, Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers. Opt. Lett. 36, 4443–4445 (2011)

    Article  ADS  Google Scholar 

  18. S.A. Diddams, M. Kirchner, T. Fortier, D. Braje, A.M. Weiner, L. Hollberg, Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. Opt. Express 17, 3331–3340 (2009)

    Article  ADS  Google Scholar 

  19. A. Haboucha, W. Zhang, T. Li, M. Lours, A.N. Luiten, Y. Le Coq, G. Santarelli, Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett. 36(18), 3654–3656 (2011)

    Article  ADS  Google Scholar 

  20. H. Jiang, J. Taylor, F. Quinlan, T. Fortier, S.A. Diddams, Noise floor reduction of an Er:fiber laser-based photonic microwave generator. IEEE Photonics J. 3(6), 1004–1012 (2011)

    Article  Google Scholar 

  21. S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M.C. Stumpf, G. Di Domenico, S. Pekarek, A.E.H. Oehler, T. Südmeyer, U. Keller, P. Thomann, Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM modelocked 1.5-μm solid-state laser. Opt. Express 19, 24171 (2011)

    Article  ADS  Google Scholar 

  22. S.A. Meyer, S. Lecomte, J. Taylor, S.A. Diddams, Low-noise microwave signals from a frequency-stabilized Yb:tungstate optical frequency comb, in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper PDA_4

  23. S.A. Meyer, T.M. Fortier, S. Lecomte, S.A. Diddams, A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation. Appl. Phys. B (on-line), doi:10.1007/s00340-013-5439-9

  24. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B. 31, 97–105 (1983)

    Article  ADS  Google Scholar 

  25. M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, S. Li, Low noise planar external cavity laser for interferometric fiber optic sensors. Proc. SPIE 7316, 73160X (2009)

  26. K. Numata, J. Camp, M.A. Krainak, L. Stolpner, Performance of planar-waveguide external cavity laser for precision measurements. Opt. Express 18(22), 22781 (2010)

    Article  ADS  Google Scholar 

  27. C. Clivati, A. Mura, D. Calonico, F. Levi, G.A. Costanzo, C.E. Calosso, A. Godone, Planar-waveguide external cavity laser stabilization for an optical link with 10−19 frequency stability. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(12), 2582–2587 (2011)

    Article  Google Scholar 

  28. B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli, Prototype of an ultra-stable optical cavity for space applications. Opt. Express 20, 25409–25420 (2012)

    Article  ADS  Google Scholar 

  29. V. Giordano, S. Grop, B. Dubois, P.-Y. Bourgeois, Y. Kersalé, G. Haye, V. Dolgovskiy, N. Bucalovic, G. Di Domenico, S. Schilt, J. Chauvin, D. Valat, E. Rubiola, New-generation cryogenic sapphire microwave oscillators for space, metrology and scientific applications. Rev. Sci. Instrum. 83(8), 085113 (2012)

    Article  ADS  Google Scholar 

  30. V. Dolgovskiy, S. Schilt, G. Di Domenico, N. Bucalovic, C. Schori, P. Thomann, 1.5-μm cavity-stabilized laser for ultra-stable microwave generation, in Proc. IFCS&EFTF Joint Conference, San Francisco, USA, May 2–5, 2011

  31. S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. Di Domenico, M. Zaffalon, P. Thomann, Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb. Rev. Sci. Instrum. 82(12), 123116 (2011)

    Article  ADS  Google Scholar 

  32. G. Di Domenico, S. Schilt, P. Thomann, Simple approach to the relation between laser frequency noise and laser lineshape. Appl. Opt. 49(25), 4801–4807 (2010)

    Article  Google Scholar 

  33. H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, U. Keller, Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999)

    Article  ADS  Google Scholar 

  34. M. Prevedelli, T. Freegarde, T.W. Hänsch, Phase locking of grating-tuned diode lasers. Appl. Phys. B 60, S241 (1995)

    Google Scholar 

  35. S. Grop, P.Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, V. Giordano, ELISA: a cryocooled 10 GHz oscillator with 10−15 frequency stability. Rev. Sci. Instrum. 81, 025102 (2010)

    Article  ADS  Google Scholar 

  36. D.W. Allan, Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)

    Article  Google Scholar 

  37. E. Rubiola, On the measurement of frequency and its sample variance with high-resolution counters. Rev. Sci. Instrum. 76, 054703 (2005)

    Article  ADS  Google Scholar 

  38. S.T. Dawkins, J.J. McFerran, A.N. Luiten, Considerations on the measurement of the stability of oscillators with frequency counters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 918–925 (2007)

    Article  Google Scholar 

  39. R. Bara, J.-M. Le Floch, M.E. Tobar, P.L. Stanwix, S.R. Parker, J.G. Hartnett, E.N. Ivanov, Generation of 103.75 GHz CW source with 5.10−16 frequency instability using cryogenic sapphire oscillators. IEEE Micrw. Wirel. Compon. Lett. 22(2), 85–87 (2012)

    Google Scholar 

  40. P. Lesage, Characterization of frequency stability: bias due to the juxtaposition of time-interval measurements. IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983)

    Article  Google Scholar 

  41. B. Bernhardt, T.W. Hänsch, R. Holzwarth, Implementation and characterization of a stable optical frequency distribution system. Opt. Express 17(19), 16849–16860 (2009)

    Article  ADS  Google Scholar 

  42. S.A. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Thermal-noise-limited optical cavity. Phys. Rev. A 77(3), 033847 (2008)

    Article  ADS  Google Scholar 

  43. K. Numata, A. Kemery, J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004)

    Article  ADS  Google Scholar 

  44. V. Dolgovskiy, N. Bucalovic, P. Thomann, C. Schori, G. Di Domenico, S. Schilt, Cross-influence between the two servo-loops of a fully-stabilized Er:fiber optical frequency comb. J. Opt. Soc. Am. B 29(10), 2944–2957 (2012)

    Article  ADS  Google Scholar 

  45. G. Marra, R. Slavík, H.S. Margolis, S.N. Lea, P. Petropoulos, D.J. Richardson, P. Gill, High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser. Opt. Lett. 36(4), 511–513 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work at Laboratoire Temps-Fréquence was financed by the Swiss National Science Foundation (SNSF) and by the Swiss Confederation Program Nano-Tera.ch, scientifically evaluated by SNSF. Authors from Femto-ST are grateful to the Fond Européen de Dévelopment Régional (FEDER), the Regional Council of Franche-Comté and OSEO for their support to the ULISS project. We thank L.-G. Bernier (METAS) for fruitful discussions about the impact of frequency counters on stability measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Schilt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgovskiy, V., Schilt, S., Bucalovic, N. et al. Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range. Appl. Phys. B 116, 593–601 (2014). https://doi.org/10.1007/s00340-013-5740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5740-7

Keywords

Navigation