, Volume 115, Issue 3, pp 343-354
Date: 21 Aug 2013

Rogue wave formation by accelerated solitons at an optical event horizon

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Rogue waves, by definition, are rare events of extreme amplitude. At the same time, they are surprisingly ubiquitous, in the sense that they can exist in a wide range of physical contexts and possess probability distributions that exhibit heavier tails than the normal Gaussian distribution. While many mechanisms have been demonstrated to explain the appearance of rogue waves in various specific systems, there is no known generic mechanism or general set of criteria shown to rule their appearance. Presupposing only the existence of a nonlinear Schrödinger-type equation together with a concave dispersion profile around a zero-dispersion wavelength, we demonstrate that solitons may experience acceleration and strong reshaping due to the interaction with continuum radiation, giving rise to extreme-value phenomena. The mechanism appears to be widely independent from interactions specific to the optical context, e.g., the Raman effect or other scattering processes that have no equivalent in other wave-supporting physical systems. In our system, a strong increase in the peak power may appear via reshaping while the pulse energy is nearly conserved. The conservative nature of the proposed reshaping-induced appearance of rogue waves makes this mechanism particularly robust.