Skip to main content
Log in

Stable MHz-repetition-rate passively Q-switched microchip laser frequency doubled by MgO:PPLN

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present an Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. The system generates 520 ps pulses at 1064 nm with 340 mW average output power at up to 2.3 MHz repetition rate. Single longitudinal and transverse mode operation with a peak-to-peak timing jitter less than 1 % is achieved. We discuss the influence of different setup parameters by using numerical simulations of the coupled rate equations and FEM simulations of the thermal management. The infrared light was frequency doubled in an MgO:PPLN crystal with up to 75 % conversion efficiency, which to our knowledge is the highest conversion efficiency that was ever achieved with passively Q-switched microchip lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Material specifications by CASIX, Inc.

References

  1. T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences 97, 8206–8210 (2000)

    Article  ADS  Google Scholar 

  2. B.R. Rankin, R.R. Kellner, S.W. Hell, Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Optics Letters 33, 2491–2493 (2008)

    Article  ADS  Google Scholar 

  3. A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, A. Tünnermann, Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser. Optics Letters 37, 2550–2552 (2012)

    Article  Google Scholar 

  4. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G.A. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, Ultrafast ytterbium-doped bulk lasers and laser amplifier. Appl. Phys. B 69, 3–17 (1999)

    Article  ADS  Google Scholar 

  5. A. Killi, A. Steinmann, J. Dörring, U. Morgner, M.J. Lederer, D. Kopf, C. Fallnich, High-peak-power pulses from a cavity-dumped Yb:KY(KW4)2 oscillator. Optics Letters 30, 1891–1893 (2005)

    Article  ADS  Google Scholar 

  6. J.J. Zayhowski, C. Dill III, Diode-pumped passively Q-switched picosecond microchip lasers. Optics Letters 19, 1427–1429 (1994)

    Article  ADS  Google Scholar 

  7. B. Braun, F.X. Kärtner, G. Zhang, M. Moser, U. Keller, 56-ps passively Q-switched diode-pumped microchip laser. Optics Letters 22, 381–383 (1997)

    Article  ADS  Google Scholar 

  8. A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, A. Tünnermann, 2 MHz repetition rate, 200 ps pulse duration from a monolithic, passively Q-switched microchip laser. Appl. Phys. B 97, 317–320 (2009)

    Article  ADS  Google Scholar 

  9. U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE Journal of Selected Topics in Quantum Electronics 2, 435–453 (1996)

    Article  Google Scholar 

  10. Material specifications by GWU-Lasertechnik: http://www.gwu-group.de/cmslaser/

  11. G.J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, U. Keller, Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B 16, 376–388 (1999)

    Article  ADS  Google Scholar 

  12. A. Steinmetz, D. Nodop, A. Martin, J. Limpert, A. Tünnermann, Reduction of timing jitter in passively Q-switched microchip lasers using self-injection seeding. Optics Letters 35, 2885–2887 (2010)

    Article  Google Scholar 

  13. B. Braun, Compact pulsed diode-pumped solid-state lasers, Diss., ETH No: 11953, 1996

  14. J. J. Zayhowski, in Thermal guiding in Microchip lasers, ed. by H. P. Jenssen and G. Dubé. Advanced solid-state lasers, vol. 5 (Washington, DC, 1990): Opt. Soc. America, OSA Proc. Series, 9–13

  15. R.S. Conroy, Microchip lasers, Dissertation, University of St. Andrews, 1998

  16. A.J. Kemp, R.S. Conroy, G.J. Friel, B.D. Sinclair, Guiding effects in Nd:YVO4 microchip lasers operating well above threshold. IEEE Journal of Quantum Electronics 35, 675–681 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge Jochen Bönig and Andreas Dietz for performing the FEM simulations. This research project is financially supported by the German Federal Ministry of Education and Research (No.: 17 N 43 08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehner, E., Steinmann, A., Hegenbarth, R. et al. Stable MHz-repetition-rate passively Q-switched microchip laser frequency doubled by MgO:PPLN. Appl. Phys. B 112, 231–239 (2013). https://doi.org/10.1007/s00340-013-5423-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5423-4

Keywords

Navigation