Skip to main content
Log in

First gravity measurements using the mobile atom interferometer GAIN

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the compact Gravimetric Atom Interferometer (GAIN), based on laser-cooled 87Rb atoms, and discuss its first measurements of the local gravitational acceleration. In this context, we also describe an active vibration isolation system and a tip-tilt stage, which allow for a suppression of vibrational noise and systematic effects like the Coriolis force due to Earth’s rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The Earth’s rotation causes also a centrifugal force, which, however, is commonly included in the definition of g.

  2. 1 μ Gal  =  10−8 m/s2 ≈ 10−9 g

  3. The subtracted offset is the mean value of the residue and would give the local, absolute gravitational value if all systematics were eliminated.

References

  1. D.S. Weiss, B.C. Young, S. Chu, Precision measurement of h/m Cs based on photon recoil using laser-cooled atoms and atomic interferometry. Appl. Phys. B Lasers Opt. 59, 217–256 (1994)

    Article  ADS  Google Scholar 

  2. A. Wicht, J. Hensley, E. Sarajlic, S. Chu , A preliminary measurement of the fine structure constant based on atom interferometry. Phys. Scr. 2002, 82 (2002)

    Article  Google Scholar 

  3. G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G.M. Tino, Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 100 (2008)

  4. S. Dimopoulos, P. Graham, J.M. Hogan, M.A. Kasevich, Testing general relativity with atom interferometry. Phys. Rev. Lett. 98, 1–4 (2007)

    Article  Google Scholar 

  5. J.M. Hogan, D.M.S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S.-W. Chiow, P.W. Graham, M.A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B.D. Seery, L. Feinberg, R. Keski-Kuha, An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO). Gen. Relat. Gravit. 43, 1953–2009 (2011)

    Article  ADS  Google Scholar 

  6. S. Herrmann, H. Dittus, C. Lämmerzahl, Testing the equivalence principle with atomic interferometry. Class. Quantum Gravity 29, 184003 (2012)

    Article  ADS  Google Scholar 

  7. A. Louchet-Chauvet, T. Farah, Q. Bodart, A. Clairon, A. Landragin, S. Merlet, F.P.D. Santos, The influence of transverse motion within an atomic gravimeter. New J. Phys. 13, 065025 (2011)

    Article  ADS  Google Scholar 

  8. A. Peters, K.-Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  9. T. Müller, M. Gilowski, M. Zaiser, P. Berg, C. Schubert, T. Wendrich, W. Ertmer, E.M. Rasel, A compact dual atom interferometer gyroscope based on laser-cooled rubidium. Eur. Phys. J. D 53, 273–281 (2009)

    Article  ADS  Google Scholar 

  10. O. Carnal, J. Mlynek, Youngs double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991)

    Article  ADS  Google Scholar 

  11. M.A. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67(2), 181–184 (1991)

    Article  ADS  Google Scholar 

  12. L. Timmen, O. Gitlein, V. Klemann, D. Wolf, Observing gravity change in the Fennoscandian uplift area with the Hanover absolute gravimeter. Pure Appl. Geophys. 169, 1331–1342 (2011)

    Article  ADS  Google Scholar 

  13. G. Berrino, Combined gravimetry in the observation of volcanic processes in Southern Italy. J. Geodynam. 30, 371–388 (2000)

    Article  ADS  Google Scholar 

  14. P. Berman, Atom interferometry. Academic Press, London (1997)

  15. J.M. Hogan, D.M.S. Johnson, M.A. Kasevich, Light-pulse atom interferometry. in Proceedings of the international school of physics enrico fermi course CLXVIII on atom optics and space physics, ed by E. Arimondo, W. Ertmer, W. P. Schleich, E. M. Rasel (IOS Press, Oxford, 2007), pp. 411–447

  16. M. Schmidt, M. Prevedelli, A. Giorgini, G.M. Tino, A. Peters, A portable laser system for high-precision atom interferometry experiments. Appl. Phys. B 102, 11–18 (2010)

    Article  ADS  Google Scholar 

  17. M. Schmidt, A. Senger, M. Hauth, C. Freier, V. Schkolnik, A. Peters, A mobile high-precision absolute gravimeter based on atom interferometry. Gyrosc. Navig. 2, 170–177 (2011)

    Article  Google Scholar 

  18. A. Senger, A mobile atom interferometer for high precision measurements of local gravity. PhD thesis, Humboldt Universität zu Berlin (2011)

  19. A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, G.M. Tino, Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G. Eur. Phys. J. D 40, 271–279 (2006)

    Article  ADS  Google Scholar 

  20. C. Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati, Laser cooling of cesium atoms below 3 μK. EPL (Europhys. Lett.) 12(8), 683 (1990)

    Article  ADS  Google Scholar 

  21. M.A. Kasevich, D.S. Weiss, E. Riis, K. Moler, S. Kasapi, S. Chu, Atomic velocity selection using stimulated Raman transitions. Phys. Rev. Lett. 66(18), 2297–2300 (1991)

    Article  ADS  Google Scholar 

  22. M.A. Kasevich, S. Chu, Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B Lasers Opt. 54, 321–332 (1992)

    Article  ADS  Google Scholar 

  23. P. Cheinet, B. Canuel, F.P.D. Santos, A. Gauguet, F. Leduc, A. Landragin, Measurement of the sensitivity function in time-domain atomic interferometer. IEEE, pp. 1–15 (2005)

  24. J. Hensley, A. Peters, S. Chu, Active low frequency vertical vibration isolation. Rev. Sci. Instrum. 70(6), 2735 (1999)

    Article  ADS  Google Scholar 

  25. S.-Y. Lan, P.-C. Kuan, B. Estey, P. Haslinger, H. Müller, Influence of the Coriolis force in atom interferometry. Phys. Rev. Lett. 108, 1–5 (2012)

    Article  Google Scholar 

  26. M. Vancamp, P. Vauterin, Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci. 31, 631–640 (2005)

    Article  ADS  Google Scholar 

  27. A. Reinhold, W. Hoppe, Technischer Bericht (G4-2010-5) Absolute und relative Schweremessungen in der Humboldt-Universität zu Berlin (Campus Adlershof) vom 10–12 September 2010. Technical report, Bundesamt für Kartographie und Geodäsie (2010)

Download references

Acknowledgments

This work is supported by the European Science Foundation and the Deutsche Forschungsgemeinschaft (Euro-Quasar-IQS, PE 904/2-1 and PE 904/4-1). We thank the Bundesamt für Kartographie und Geodäsie and the Institut für Erdmessung for their help with the tidal model and its parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hauth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauth, M., Freier, C., Schkolnik, V. et al. First gravity measurements using the mobile atom interferometer GAIN. Appl. Phys. B 113, 49–55 (2013). https://doi.org/10.1007/s00340-013-5413-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5413-6

Keywords

Navigation