Skip to main content

Advertisement

Log in

Compression of long-cavity Ti:sapphire oscillator pulses with large-mode-area photonic crystal fibers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Motivated by the pulse compression challenge of novel long-cavity, high-pulse-energy Ti:sapphire laser oscillators, we report on ~280 nm supercontinuum generation and 4.5-times compression of close to transform limited, high-energy oscillator pulses using different large-mode-area photonic crystal fibers and standard chirped mirrors. As input, we used pulses of a long-cavity Ti:sapphire oscillator with 190 nJ pulse energy, 70 fs pulse length and 3.6 MHz repetition rate. Compressed pulses at the fiber/compressor output had a duration of 15–18 fs with up to 100 nJ pulse energy representing as much as 53 % throughput for the fiber/chirped mirror system. Using transform-limited input pulses, we could use short fiber pieces and thus a simple, low-dispersion chirped mirror compressor comprised of one pair of mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Dombi, V.S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, G. Tempea, Opt. Express 13, 10888 (2005) and references therein

  2. M. Yamashita, K. Yamane, R. Morita, IEEE J. Sel. Top. Quant. El 12, 213 (2006)

    Article  Google Scholar 

  3. E. Matsubara, K. Yamane, T. Sekikawa, M. Yamashita, J. Opt. Soc. Am. B 24, 985 (2007)

    Article  ADS  Google Scholar 

  4. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, A. Leitenstorfer, Nature Phot. 4, 33 (2010)

    Article  ADS  Google Scholar 

  5. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  6. G. Stibenz, N. Zhavoronkov, G. Steinmeyer, Opt. Lett. 31, 274–276 (2006)

    Article  ADS  Google Scholar 

  7. G. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 2006)

    Google Scholar 

  8. A. Baltuška, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma, R. Szipocs, Appl. Phys. B 65, 175 (1997)

    Article  ADS  Google Scholar 

  9. P. Dombi, A. Apolonski, Ch. Lemell, G.G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, New J. Phys. 6, 39 (2004)

    Article  ADS  Google Scholar 

  10. T. Eidam, F. Röser, O. Schmidt, J. Limpert, A. Tünnermann, Appl. Phys. B 92, 9–12 (2008)

    Article  ADS  Google Scholar 

  11. C. Jocher, T. Eidam, S. Haedrich, J. Limpert, A. Tünnermann, Opt. Lett. 37, 4407–4409 (2012)

    Article  ADS  Google Scholar 

  12. I.V. Fedotov, A.A. Lanin, A.A. Voronin, A.B. Fedotov, A.M. Zheltikov, O.N. Egerova, S.L. Semjonov, A.D. Pryamikov, E.M. Diano, J. Mod. Opt. 57, 1867–1870 (2010)

    Article  ADS  Google Scholar 

  13. I. Martial, D. Papadopoulos, M. Hanna, F. Druon, P. Georges, Opt. Express 17, 11155–11160 (2009)

    Article  ADS  Google Scholar 

  14. M. Nisoli, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)

    Article  ADS  Google Scholar 

  15. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, A. Apolonski, New J. Phys. 7, 216 (2005)

    Article  ADS  Google Scholar 

  16. T. Südmeyer, S.V. Marchese, S. Hashimoto, C.R.E. Baer, G. Gingras, B. Witzel, U. Keller, Nature Phot. 2, 599 (2008)

    Article  Google Scholar 

  17. A. Chong, W.H. Renninger, F.W. Wise, Opt. Lett. 32, 2408 (2007)

    Article  ADS  Google Scholar 

  18. B. Ortaç, M. Baumgartl, J. Limpert, A. Tünnermann, Opt. Lett. 34, 1585 (2009)

    Article  ADS  Google Scholar 

  19. NKT Photonics, http://www.nktphotonics.com/

  20. C.-H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, S. Heinemann, Opt. Lett. 31, 17 (2006)

    Article  ADS  Google Scholar 

  21. D. Flamm, C. Schulze, O.A. Schmidt, S. Schröter, M. Duparré, Proc. SPIE 7914, 79141R (2011)

    Article  ADS  Google Scholar 

  22. G. Genty, T. Ritari, H. Ludvigsen, Opt. Express 13, 8625 (2005)

    Article  ADS  Google Scholar 

  23. V. Mitrofanov, A.A. Ivanov, M.V. Alfimov, A.A. Podshivalov, A.M. Zheltikov, Opt. Commun. 280, 453 (2007)

    Article  ADS  Google Scholar 

  24. R. Cherif, M. Zghal, I. Nikolov, M. Danilov, Opt. Commun. 283, 4378 (2010)

    Article  ADS  Google Scholar 

  25. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J.C. Baggett, T.M. Monro, D.J. Richardson, U. Keller, Opt. Lett. 28, 1951 (2003)

    Article  ADS  Google Scholar 

  26. T. Ganz, V. Pervak, A. Apolonski, P. Baum, Opt. Lett. 36, 1107 (2011)

    Article  Google Scholar 

  27. P. Dombi, P. Antal, J. Fekete, R. Szipöcs, Z. Várallyay, Appl. Phys. B 88, 379 (2007)

    Article  ADS  Google Scholar 

  28. P. Dombi, P. Antal, Laser Phys. Lett. 4, 538 (2007)

    Article  ADS  Google Scholar 

  29. J.W. Nicholson, J. Jasapara, W. Rudolph, F.G. Omenetto, A.J. Taylor, Opt. Lett. 24, 1774 (1999)

    Article  ADS  Google Scholar 

  30. W. Koehler, G. Tempea, Proc. SPIE 7582, 75820B (2010)

    Article  ADS  Google Scholar 

  31. S. Dewald, T. Lang, C.D. Schröter, R. Moshammer, J. Ullrich, M. Siegel, U. Morgner, Opt. Lett. 31, 2072 (2006)

    Article  ADS  Google Scholar 

  32. P. Dombi, S.E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuska, T. Fuji, F. Krausz, A.Y. Elezzabi, Opt. Express 18, 24206 (2010)

    Article  ADS  Google Scholar 

  33. P. Rácz, S.E. Irvine, M. Lenner, A. Mitrofanov, A. Baltuska, A.Y. Elezzabi, P. Dombi, Appl. Phys. Lett. 98, 111116 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by grant ELI-09-1-2010-0010 of the National Development Agency of Hungary. P. D. acknowledges support from the János Bolyai Scholarship of the Hungarian Academy of Sciences and from an EU Marie Curie Intra-European Fellowship (project UPNEX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Dombi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fekete, J., Rácz, P. & Dombi, P. Compression of long-cavity Ti:sapphire oscillator pulses with large-mode-area photonic crystal fibers. Appl. Phys. B 111, 415–418 (2013). https://doi.org/10.1007/s00340-013-5349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5349-x

Keywords

Navigation