Skip to main content
Log in

Electronic detection of a single particle in a coplanar-waveguide Penning trap

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a detailed model of the electronic detection of a single particle in a coplanar-waveguide Penning trap. The detection signal is the electric current induced upon the trap’s surface by the charged particle’s motion. In contrast to three-dimensional hyperbolic or cylindrical traps, the cyclotron and magnetron motions can be detected, excited or coupled to the axial motion without segmenting any of the trap’s electrodes. We calculate the effective coupling displacement for different electrodes. This determines the detection signal and resistive cooling time constant for each component of the ion’s motion. We discuss the practical implementation of the electronic detection for a single electron and a single proton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Stahl, F. Galve, J. Alonso, S. Djekić, W. Quint, T. Valenzuela, J. Verdú, M. Vogel, G. Werth, Eur. Phys. J. D 32, 139 (2005)

    Article  ADS  Google Scholar 

  2. J.R. Castrejón-Pita, R.C. Thompson, Phys. Rev. A 72, 013405 (2005)

    Article  ADS  Google Scholar 

  3. J. Goldman, G. Gabrielse, Phys. Rev. A 81, 052335 (2010)

    Article  ADS  Google Scholar 

  4. G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. Lett. 91, 017901 (2003)

    Article  ADS  Google Scholar 

  5. D. Porras, J.I. Cirac, Phys. Rev. Lett. 96, 250501 (2006)

    Article  ADS  Google Scholar 

  6. J.M. Taylor, T. Calarco, Phys. Rev. A 78, 062331 (2008)

    Article  ADS  Google Scholar 

  7. L. Lamata, D. Porras, J.I. Cirac, J. Goldman, G. Gabrielse, Phys. Rev. A 81, 022301 (2010)

    Article  ADS  Google Scholar 

  8. G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. A 78, 012338 (2008)

    Article  ADS  Google Scholar 

  9. G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. A 82, 044302 (2010)

    Article  ADS  Google Scholar 

  10. F. Galve, P. Fernández, G. Werth, Eur. Phys. J. D 40, 201 (2006)

    Article  ADS  Google Scholar 

  11. P. Bushev, S. Stahl, R. Natali, G. Marx, E. Stachowska, G. Werth, M. Hellwig, F. Schmidt-Kaler, Eur. Phys. J. D 50, 97 (2008)

    Article  ADS  Google Scholar 

  12. J. Verdú, New J. Phys. 13, 113029 (2011)

    Article  ADS  Google Scholar 

  13. C.P. Wen, IEEE Trans. Microw. Theory Tech. 17, 1087 (1969)

    Article  ADS  Google Scholar 

  14. A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  15. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature (London) 431, 162 (2004)

    Article  ADS  Google Scholar 

  16. J. Verdú, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, J. Schmiedmayer, Phys. Rev. Lett. 103, 043603 (2009)

    Article  ADS  Google Scholar 

  17. A. André, D. DeMille, J.M. Doyle, M.D. Lukin, P. Rabl, R.J. Schoelkopf, P. Zoller, Nat. Phys. 2, 636 (2006)

    Article  Google Scholar 

  18. D.I. Schuster, L.S. Bishop, I.L. Chuang, D. DeMille, R.J. Schoelkopf, Phys. Rev. A 83, 012311 (2011)

    Article  ADS  Google Scholar 

  19. H.G. Dehmelt, F.L. Walls, Phys. Rev. Lett. 21, 127 (1968)

    Article  ADS  Google Scholar 

  20. D.J. Wineland, H.G. Dehmelt, J. Appl. Phys. 46, 919 (1975)

    Article  ADS  Google Scholar 

  21. J. Verdú, S. Djekic, S. Stahl, T. Valenzuela, M. Vogel, G. Werth, T. Beier, H.-J. Kluge, W. Quint, Phys. Rev. Lett. 92, 093002 (2004)

    Article  ADS  Google Scholar 

  22. H.G. Dehmelt, Proc. Natl. Acad. Sci. USA 83, 2291 (1986)

    Article  ADS  Google Scholar 

  23. R.N. Simons, R.K. Arora, IEEE Trans. Microw. Theory Tech. 30, 1094 (1982)

    Article  ADS  Google Scholar 

  24. B.C. Wadell, Transmission Line Design Handbook (Artech House, Norwood, 1991)

    Google Scholar 

  25. M. Kretzschmar, Int. J. Mass Spectrom. 275, 21 (2008)

    Article  ADS  Google Scholar 

  26. M. Breitenfeldt, S. Baruah, K. Blaum, A. Herlert, M. Kretzschmar, F. Martinez, G. Marx, L. Schweikhard, N. Walsh, Int. J. Mass Spectrom. 275, 34 (2008)

    Article  ADS  Google Scholar 

  27. S. Stahl, Ph.D. Thesis. Johannes Gutenberg-Universität Mainz, Germany (1998)

  28. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 2005)

    Google Scholar 

  29. W.M. Itano, J.C. Bergquist, J.J. Bollinger, D.J. Wineland, Phys. Scr. T 59, 106 (1995)

    Article  ADS  Google Scholar 

  30. G. Gabrielse, Phys. Rev. A 29, 462 (1984)

    Article  ADS  Google Scholar 

  31. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  32. X. Feng, M. Charlton, M. Holzscheiter, R.A. Lewis, Y. Yamazaki, J. Appl. Phys. 79, 8 (1996)

    Article  ADS  Google Scholar 

  33. S. Ulmer, H. Kracke, K. Blaum, S. Kreim, A. Mooser, W. Quint, C.C. Rodegheri, J. Walz, Rev. Sci. Instrum. 80, 123302 (2009)

    Article  ADS  Google Scholar 

  34. S.R. Jefferts, T. Heavner, P. Hayes, G.H. Dunn, Rev. Sci. Instrum. 64, 737 (1993)

    Article  ADS  Google Scholar 

  35. H. Häffner, T. Beier, S. Djekic, N. Hermanspahn, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, T. Valenzuela, G. Werth, Eur. Phys. J. D 22, 163 (2003)

    Article  ADS  Google Scholar 

  36. E.A. Cornell, R.M. Weisskoff, K.R. Boyce, D.E. Pritchard, Phys. Rev. A 41, 312 (1990)

    Article  ADS  Google Scholar 

  37. S. Ulmer, C.C. Rodegheri, K. Blaum, H. Kracke, A. Mooser, W. Quint, J. Walz, Phys. Rev. Lett. 106, 253001 (2011)

    Article  ADS  Google Scholar 

  38. G. Gabrielse, J. Tan, J. Appl. Phys. 63, 5143 (1988)

    Article  ADS  Google Scholar 

  39. H. Häffner, T. Beier, N. Hermanspahn, H.-J. Kluge, W. Quint, S. Stahl, J. Verdú, G. Werth, Phys. Rev. Lett. 85, 5308 (2000)

    Article  ADS  Google Scholar 

  40. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  41. S. Djekic, J. Alonso, H.-J. Kluge, W. Quint, S. Stahl, T. Valenzuela, J. Verdú, M. Vogel, G. Werth, Eur. Phys. J. D 31, 451 (2004)

    Article  ADS  Google Scholar 

  42. L. Frunzio, A. Wallraff, D. Schuster, J. Majer, R. Schoelkopf, IEEE Trans. Appl. Supercond. 15, 860 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from EPSRC, under grant EP/I012850/1, from the Marie Curie reintegration grant “NGAMIT” and from SEPnet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Verdú.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Rjoub, A., Verdú, J. Electronic detection of a single particle in a coplanar-waveguide Penning trap. Appl. Phys. B 107, 955–964 (2012). https://doi.org/10.1007/s00340-012-5069-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5069-7

Keywords

Navigation