Skip to main content
Log in

Laser ablation loading of a radiofrequency ion trap

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10−7 to 10−6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Fischer, Z. Phys. 156, 1 (1959)

    Article  ADS  Google Scholar 

  2. W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Phys. Rev. Lett. 41, 233 (1978)

    Article  ADS  Google Scholar 

  3. N. Kjaergaard, L. Hornekaer, A.M. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B 71, 207 (2000)

    Article  ADS  Google Scholar 

  4. S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001)

    Article  ADS  Google Scholar 

  5. R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan, M. Drewsen, Appl. Phys. B 88, 507 (2007)

    Article  ADS  Google Scholar 

  6. K. Sheridan, W. Lange, M. Keller, Appl. Phys. B 104, 755 (2011)

    Article  ADS  Google Scholar 

  7. S.G. Porsev, V.V. Flambaum, E. Peik, Chr. Tamm, Phys. Rev. Lett. 105, 182501 (2010)

    Article  ADS  Google Scholar 

  8. R.D. Knight, Appl. Phys. Lett. 38, 221 (1981)

    Article  ADS  Google Scholar 

  9. V.H.S. Kwong, Phys. Rev. A 39, 4451 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  10. Y. Hashimoto, L. Matsuoka, H. Osaki, Y. Fukushima, S. Hasegawa, Jpn. J. Appl. Phys. 45, 7108 (2006)

    Article  ADS  Google Scholar 

  11. D.R. Leibrandt, R.J. Clark, J. Labaziewicz, P. Antohi, W. Bakrt, K.R. Brown, I.L. Chuang, Phys. Rev. A 76, 055403 (2007)

    Article  ADS  Google Scholar 

  12. T. Kwapien, U. Eichmann, W. Sandner, Phys. Rev. A 75, 063418 (2007)

    Article  ADS  Google Scholar 

  13. C.J. Campbell, A.V. Steele, L.R. Churchill, M.V. DePalatis, D.E. Naylor, D.N. Matsukevich, A. Kuzmich, M.S. Chapman, Phys. Rev. Lett. 102, 233004 (2009)

    Article  ADS  Google Scholar 

  14. G.C. Eiden, A.W. Garrett, M.E. Cisper, N.S. Nogar, P.H. Hemberger, Int. J. Mass Spectrom. 136, 119 (1994)

    Article  ADS  Google Scholar 

  15. D.B. Robb, M.W. Blades, Int. J. Mass Spectrom. 190/191, 69 (1999)

    Article  Google Scholar 

  16. P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72, 315 (2000)

    Article  ADS  Google Scholar 

  17. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  18. B. Thestrup, B. Toftmann, J. Schou, B. Doggett, J.G. Lunney, Appl. Surf. Sci. 197, 175 (2002)

    Article  ADS  Google Scholar 

  19. L. Laska et al., Plasma Phys. Control. Fusion 45, 585 (2003)

    Article  ADS  Google Scholar 

  20. W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  21. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  22. O. Chung-Sing, H.A. Schuessler, J. Appl. Phys. 52, 1157 (1981)

    Article  ADS  Google Scholar 

  23. O. Chung-Sing, H.A. Schuessler, Appl. Phys. B 27, 129 (1982)

    Article  ADS  Google Scholar 

  24. R.R. Vargas, R.A. Yost, in Practical Aspects of Ion Trap Mass Spectrometry, vol. II, ed. by R.E. March, J.F.J. Todd (CRC Press, Boca Raton, 1995)

    Google Scholar 

  25. S. Schwarz, Lect. Notes Phys. 749, 97 (2008)

    Google Scholar 

  26. W. Kälber, G. Meisel, J. Rink, R.C. Thompson, J. Mod. Opt. 39, 335 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Chr. Tamm for helpful discussions and D. Griebsch and Th. Leder for their expert technical support. This work was partially supported by DFG within the cluster of excellence QUEST. OAHS acknowledges support from ITCR, MICIT, and DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Peik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, K., Okhapkin, M.V., Herrera-Sancho, O.A. et al. Laser ablation loading of a radiofrequency ion trap. Appl. Phys. B 107, 883–889 (2012). https://doi.org/10.1007/s00340-012-4884-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4884-1

Keywords

Navigation