Skip to main content
Log in

Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The results of a novel technique for the quantification of oxygen in an isothermal turbulent free jet using toluene laser induced fluorescence (LIF) are presented. This method relies on the red-shift of the toluene LIF emission spectrum with increasing oxygen concentration. Evaluating the LIF signal ratio from two different wavelength regions simultaneously produces results that depend only on the local oxygen concentration. From calibration data, obtained from repeated tests, the oxygen sensitivity of the two-color LIF technique is best for oxygen partial pressures \(p_{\mathrm{O}_{2}} \leq 120\mbox{ mbar}\) in the current setup. Quantified images of oxygen distribution are presented for 40.4, 60.5, 80.5, and 103 mbar \(p_{\mathrm{O}_{2}}\) in the toluene-seeded jet flow that is shielded by a toluene-seeded nitrogen co-flow at atmospheric pressure and temperature. Based on the average oxygen concentration images (obtained from 100 instantaneous oxygen images), the error in accuracy of measuring the oxygen concentration was 0.8, 3.0, 7.7, and 7.3% with a precision of ± 8.6, 5.5, 13.3, and 11.6% for the jet \(p_{\mathrm{O}_{2}} = 40.4,\, 60.5,\, 80.5,\mbox{ and }103\mbox{ mbar}\) cases, respectively. The main jet flow characteristics have been captured by the technique as determined from the measured oxygen distribution images. Centerline profiles of average oxygen concentration, normalized to the value at the nozzle exit, demonstrate self-similar behavior from 5 mm above the nozzle exit. Radial oxygen concentration profiles exhibit a Gaussian-type distribution that broadens with distance above the nozzle exit, in agreement with literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Drake, D.C. Haworth, Proc. Combust. Inst. 31, 99 (2007)

    Article  Google Scholar 

  2. H. Zhao, N. Ladommatos, Prog. Energy Combust. Sci. 24, 297 (1998)

    Article  Google Scholar 

  3. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  4. J.E. Dec, W. Hwang, SAE Tech. Pap. Ser. 2, 421 (2009)

    Google Scholar 

  5. M. Luong, W. Koban, C. Schulz, J. Phys. Conf. Ser. 45, 133 (2006)

    Article  ADS  Google Scholar 

  6. S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717 (2000)

    Article  ADS  Google Scholar 

  7. D.A. Rothamer, J.A. Snyder, R.K. Hanson, R.R. Steeper, R.P. Fitzgerald, Proc. Combust. Inst. 32, 2869 (2009)

    Article  Google Scholar 

  8. J. Reboux, D. Puechberty, SAE Tech. Pap. Ser. 941988 (1994)

  9. W. Koban, J.D. Koch, R.K. Hanson, Appl. Phys. B 80, 147 (2005)

    Article  ADS  Google Scholar 

  10. W. Koban, J. Schorr, C. Schulz, Appl. Phys. B 74, 111 (2002)

    Article  ADS  Google Scholar 

  11. D. Frieden, V. Sick, J. Gronki, C. Schulz, Appl. Phys. B 75, 137 (2002)

    Article  ADS  Google Scholar 

  12. F.K. King, R.P. Lucht, J.C. Dutton, Phys. Lett. 22, 633 (1997)

    Google Scholar 

  13. T.R. Meyer, J.C. Dutton, R.P. Lucht, J. Fluid Mech. 558, 179 (2006)

    Article  ADS  MATH  Google Scholar 

  14. B. Yip, A. Lozano, R.K. Hanson, Exp. Fluids 17, 16 (1994)

    Article  Google Scholar 

  15. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)

    Article  ADS  Google Scholar 

  16. T. Etzkom, B. Klotz, S. Sorensen, I.V. Patroescu, I. Barnes, K.H. Becker, U. Platt, Atmos. Environ. 33, 525 (1999)

    Article  Google Scholar 

  17. B.R. Petersen, J.B. Ghandhi, J.D. Koch, Appl. Phys. B 93, 639 (2008)

    Article  ADS  Google Scholar 

  18. J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)

    Article  ADS  Google Scholar 

  19. R.G. Brown, D. Phillips, J. Chem. Soc. Faraday Trans. II 70, 630 (1974)

    Article  Google Scholar 

  20. C.S. Burton, W.A. Noyes, J. Chem. Phys. 49, 1705 (1968)

    Article  ADS  Google Scholar 

  21. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  22. G. Tea, G. Bruneaux, J.T. Kashdan, C. Schulz, Proc. Combust. Inst. 33, 783 (2010)

    Article  Google Scholar 

  23. J. Mi, D.S. Nobes, G.J. Nathan, J. Fluid Mech. 432, 91 (2001)

    ADS  MATH  Google Scholar 

  24. C.D. Richards, W.M. Pitts, J. Fluid Mech. 254, 417 (1993)

    Article  ADS  Google Scholar 

  25. C.L. Lubbers, G. Brethouwer, B.J. Boersma, Fluid Dyn. Res. 28, 189 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. L. Boguslawski, C.O. Popiel, J. Fluid Mech. 90, 531 (1979)

    Article  ADS  Google Scholar 

  27. D. Adair, M.R. Malin, B.A. Younis, Appl. Math. Model. 16, 476 (1992)

    Article  Google Scholar 

  28. J.A. Hinze, Turbulence (McGraw-Hill, New York, 1975)

    Google Scholar 

  29. A.D. Birch, D.R. Brown, M.G. Godson, J.R. Thomas, J. Fluid Mech. 88, 431 (1978)

    Article  ADS  Google Scholar 

  30. B.H. Cheung, R.K. Hanson, Appl. Phys. B 98, 581 (2010)

    Article  ADS  Google Scholar 

  31. H.A. Becker, H.C. Hottel, G.C. Williams, J. Fluid Mech. 30, 285 (1967)

    Article  ADS  Google Scholar 

  32. C. Fukushima, L. Aanen, J. Westerweel, Laser Techniques for Fluid Mechanics (Springer, Berlin, 2002), p. 339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mohri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohri, K., Luong, M., Vanhove, G. et al. Imaging of the oxygen distribution in an isothermal turbulent free jet using two-color toluene LIF imaging. Appl. Phys. B 103, 707–715 (2011). https://doi.org/10.1007/s00340-011-4564-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4564-6

Keywords

Navigation