, Volume 100, Issue 3, pp 521-533
Date: 03 Jul 2010

Characterization of aerosol plumes in nanosecond laser ablation of molecular solids at atmospheric pressure

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Ablation of molecular solids with pulsed ultraviolet lasers at atmospheric pressure is an important process in (bio-)organic mass spectrometry. Of practical importance for analytical sampling and analysis are the plume formation and expansion. Plumes formed by atmospheric-pressure laser ablation of anthracene and 2,5-dihydroxybenzoic acid (2,5-DHB) were studied by light scattering imaging, which showed significant material release in the form of aerosols. The monitored plume expansion dynamics could be fitted to the drag-force model, yielding initial plume velocities of 150 m/s for anthracene and 43 m/s for DHB. While the angle of incidence does not affect the plume direction and propagation, a large dependence of the plume-expansion velocity on the laser pulse energy could be found, which is limited at atmospheric pressure by the onset of plasma shielding. With respect to analytical applications, the efficiency of sampling of the laser ablation products by a capillary could be experimentally visualized.