Applied Physics B

, Volume 100, Issue 1, pp 3–8

Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers

Authors

  • B. Bernhardt
    • Max Planck Institut für Quantenoptik
  • E. Sorokin
    • Institut für PhotonikTU Wien
  • P. Jacquet
    • Institut des Sciences Moléculaires d’OrsayCNRS
  • R. Thon
    • Institut des Sciences Moléculaires d’OrsayCNRS
  • T. Becker
    • Max Planck Institut für Quantenoptik
  • I. T. Sorokina
    • Department of PhysicsNorwegian University of Science and Technology
    • Max Planck Institut für Quantenoptik
    • Institut des Sciences Moléculaires d’OrsayCNRS
    • Fakultät für PhysikLudwig-Maximilians-Universität München
  • T. W. Hänsch
    • Max Planck Institut für Quantenoptik
    • Fakultät für PhysikLudwig-Maximilians-Universität München
Article

DOI: 10.1007/s00340-010-4080-0

Cite this article as:
Bernhardt, B., Sorokin, E., Jacquet, P. et al. Appl. Phys. B (2010) 100: 3. doi:10.1007/s00340-010-4080-0

Abstract

The mid-infrared part of the electromagnetic spectrum is the so-called molecular fingerprint region because gases have tell-tale absorption features associated with molecular rovibrations. This region can be for instance exploited to detect small traces of environmental and toxic vapors in atmospheric and industrial applications. Novel Fourier-transform spectroscopy without moving parts, based on time-domain interferences between two comb sources, can in particular benefit optical diagnostics and precision spectroscopy. To date, high-resolution and -sensitivity proof-of-principle experiments have only been reported in the near-infrared region where frequency-comb oscillators are conveniently available. However, as most of the molecular transitions in this region are due to weak overtone bands, this spectral domain is not ideal for sensitive and rapid detection. Here we present a proof-of-principle experiment of frequency-comb Fourier-transform spectroscopy with two Cr2+:ZnSe femtosecond oscillators directly emitting in the 2.4 μm mid-infrared region. The acetylene absorption spectrum in the region of the \(\nu_{1}+\nu_{5}^{1}\) band, extending from 2370 to 2525 nm, could be recorded within a 10 μs acquisition time without averaging with 12 GHz resolution.

Copyright information

© Springer-Verlag 2010