Applied Physics B

, Volume 101, Issue 1, pp 273–282

Elementary-field modeling of surface-plasmon excitation with partially coherent light

Article

DOI: 10.1007/s00340-010-4012-z

Cite this article as:
Hyvärinen, H.J., Turunen, J. & Vahimaa, P. Appl. Phys. B (2010) 101: 273. doi:10.1007/s00340-010-4012-z

Abstract

We present a mathematical model and its numerical implementation for the analysis of the interaction of spatially partially coherent electromagnetic fields with micro- and nanostructured objects. The model is based on the decomposition of the incident field into a set of fully coherent but mutually uncorrelated elementary field modes, and the use of the Fourier Modal Method (FMM) with the S-matrix propagation algorithm. We apply the model to studies of the excitation of surface plasmons in thin metallic slabs, nanowires, and resonant structures. We demonstrate, e.g., that the plasmon excitation efficiency is not essentially affected by the degree of spatial coherence. However, certain plasmon interference effects can be efficiently smoothed out by using illumination with reduced coherence.

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Physics and MathematicsUniversity of Eastern FinlandJoensuuFinland