Applied Physics B

, 97:339

Spectroscopy and lasing of cryogenically cooled Yb, Na:CaF2

  • A. Pugžlys
  • G. Andriukaitis
  • D. Sidorov
  • A. Irshad
  • A. Baltuška
  • W. J. Lai
  • P. B. Phua
  • L. Su
  • J. Xu
  • H. Li
  • R. Li
  • S. Ališauskas
  • A. Marcinkevičius
  • M. E. Fermann
  • L. Giniūnas
  • R. Danielius
Article

DOI: 10.1007/s00340-009-3740-4

Cite this article as:
Pugžlys, A., Andriukaitis, G., Sidorov, D. et al. Appl. Phys. B (2009) 97: 339. doi:10.1007/s00340-009-3740-4

Abstract

Absorption, photoluminescence and cw-lasing properties of a novel Na+-codoped Yb3+:CaF2 laser crystal are investigated in the temperature range from 10 K to 290 K. Cryogenic cooling leads to the disappearance of the ground-state absorption in the spectral region above 1000 nm and a substantial increase of emission and absorption cross-sections. A particular advantage of the Yb3+, Na+-codoped CaF2 crystal lies in the possibility of a direct pumping in the vicinity of the zero phonon line while nearly perfectly avoiding an overlap with the stimulated emission. Further advantages of the low-temperature operation are demonstrated by achieving a close to the theoretical limit slope efficiency of 92% in a cw-laser operation with an output coupler of 28%. By seeding stretched pulses from a femtosecond Yb fiber oscillator into a cryogenically cooled DPSS Yb3+, Na+:CaF2 regenerative amplifier, we obtain >3-mJ pulses at a 1-kHz repetition rate with a spectral bandwidth exceeding 12 nm. The pulses are compressed with a single grating compressor to 173 fs as verified by SHG FROG. Shaping of the spectral amplitude of the seed and active control of the higher-order phase is shown to be crucial for obtaining sub-200-fs pulses at multi-mJ energies.

PACS

42.55.Rz42.55.Xi42.60.Da42.60.Lh42.65.Re

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. Pugžlys
    • 1
  • G. Andriukaitis
    • 1
  • D. Sidorov
    • 1
  • A. Irshad
    • 1
  • A. Baltuška
    • 1
  • W. J. Lai
    • 3
  • P. B. Phua
    • 3
  • L. Su
    • 4
  • J. Xu
    • 4
  • H. Li
    • 4
  • R. Li
    • 5
  • S. Ališauskas
    • 1
    • 2
  • A. Marcinkevičius
    • 6
  • M. E. Fermann
    • 6
  • L. Giniūnas
    • 7
  • R. Danielius
    • 7
  1. 1.Photonics InstituteVienna University of TechnologyViennaAustria
  2. 2.Laser Research CenterVilnius UniversityVilniusLithuania
  3. 3.Nanyang Technological UniversitySingaporeSingapore
  4. 4.Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  5. 5.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  6. 6.IMRA America Inc.Ann ArborUSA
  7. 7.Light Conversion Ltd.VilniusLithuania