, Volume 95, Issue 1, pp 179-186
Date: 28 Feb 2009

Higher-order surface solitons in one-dimensional Bessel optical lattices

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We demonstrate the existence of higher-order solitons occurring at an interface separating two one-dimensional (1D) Bessel optical lattices with different orders or modulation depths in a defocusing medium. We show that, in contrast to homogeneous waveguides where higher-order solitons are always unstable, the Bessel lattices with an interface support branches of higher-order structures bifurcating from the corresponding linear modes. The profiles of solitons depend remarkably on the lattice parameters and the stability can be enhanced by increasing the lattice depth and selecting higher-order lattices. We also reveal that the interface model with defocusing saturable Kerr nonlinearity can support stable multi-peaked solitons. The uncovered phenomena may open a new way for soliton control and manipulation.