Applied Physics B

, 94:337

Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques

Authors

    • Electrical and Computer Engineering DepartmentUniversity of Alberta
  • W. Jäger
    • Chemistry CentreUniversity of Alberta
  • J. Tulip
    • Electrical and Computer Engineering DepartmentUniversity of Alberta
Article

DOI: 10.1007/s00340-008-3285-y

Cite this article as:
Manne, J., Jäger, W. & Tulip, J. Appl. Phys. B (2009) 94: 337. doi:10.1007/s00340-008-3285-y

Abstract

Spectroscopic concentration measurements of ammonia and ethylene were done with a pulsed, distributed feedback (DFB) quantum cascade (QC) laser centered at 970 cm−1. An astigmatic Herriot cell with 150 m path length was employed, and we compare the results from experiments using inter- and intrapulse techniques, respectively. The measurements include the detection of ammonia in breath with these methodologies. In the interpulse technique, the laser was excited with short current pulses (5–10 ns), and the pulse amplitude was modulated with an external current ramp resulting in a ∼0.3 cm−1 frequency scan. A standard amplitude demodulation technique was implemented for extracting the absorption line, thus avoiding the need for a fast digitizer or a gated integrator. In the intrapulse technique, a linear frequency down-chirp is used for sweeping across the absorption line. A 200 ns long current pulse was used for these measurements which resulted in a spectral window of ∼1.74 cm−1 during the down-chirp. The use of a room temperature mercury-cadmium-telluride detector resulted in a completely cryogen free spectrometer. We demonstrate detection limits of ∼3 ppb for ammonia and ∼5 ppb for ethylene with less than 10 s averaging time with the intrapulse method and ∼4 ppb for ammonia and ∼7 ppb for ethylene with the interpulse technique with an integration time of ∼5 s.

PACS

07.07.Df33.20.Ea42.62.Fi42.62.Be

Copyright information

© Springer-Verlag 2008