Applied Physics B

, Volume 94, Issue 3, pp 527–533

Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy

Authors

  • K. Liu
    • Environmental Spectroscopy Laboratory, Anhui Institute of Optics & Fine MechanicsChinese Academy of Sciences
  • J. Li
    • Environmental Spectroscopy Laboratory, Anhui Institute of Optics & Fine MechanicsChinese Academy of Sciences
  • L. Wang
    • Environmental Spectroscopy Laboratory, Anhui Institute of Optics & Fine MechanicsChinese Academy of Sciences
  • T. Tan
    • Environmental Spectroscopy Laboratory, Anhui Institute of Optics & Fine MechanicsChinese Academy of Sciences
  • W. Zhang
    • Environmental Spectroscopy Laboratory, Anhui Institute of Optics & Fine MechanicsChinese Academy of Sciences
    • Environmental Spectroscopy Laboratory, Anhui Institute of Optics & Fine MechanicsChinese Academy of Sciences
  • W. Chen
    • Laboratoire de Physicochimie de l’Atmosphère, CNRS UMR 8101Université du Littoral Côte d’Opale
  • F. K. Tittel
    • Rice Quantum Institute, MS 366Rice University
Article

DOI: 10.1007/s00340-008-3233-x

Cite this article as:
Liu, K., Li, J., Wang, L. et al. Appl. Phys. B (2009) 94: 527. doi:10.1007/s00340-008-3233-x

Abstract

A compact photoacoustic gas sensor based on a quartz tuning fork and fiber-coupled distributed feedback (DFB) diode laser for detection of trace gas at atmospheric pressure has been developed. The sensor performance was evaluated by detection of water vapor in ambient air at normal atmospheric pressure. A normalized noise equivalent absorption coefficient of 1.68×10−8 cm−1 W/Hz1/2 was achieved. Influence of different acoustic microresonators and sample pressure on the sensor performance, and the characterization of the sensor response time were investigated. Approaches to improve the current sensor performance are discussed.

PACS

42.55.Px42.62.Fi43.35.Sx

Copyright information

© Springer-Verlag 2008