Skip to main content
Log in

Vertical integration of ultrafast semiconductor lasers

  • Rapid communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Lasers generating short pulses – referred to as ultrafast lasers – enable many applications in science and technology. Numerous laboratory experiments have confirmed that ultrafast lasers can significantly increase telecommunication data rates [1], improve computer interconnects, and optically clock microprocessors [2, 3]. New applications in metrology [4], supercontinuum generation [5], and life sciences with two-photon microscopy [6] only work with ultrashort pulses but have relied on bulky and complex ultrafast solid-state lasers. Semiconductor lasers are ideally suited for mass production and widespread applications, because they are based on a wafer-scale technology with a high level of integration. Not surprisingly, the first lasers entering virtually every household were semiconductor lasers in compact disk players. Here we introduce a new concept and make the first feasibility demonstration of a new class of ultrafast semiconductor lasers which are power scalable, support both optical and electrical pumping and allow for wafer-scale fabrication. The laser beam propagates vertically (perpendicularly) through the epitaxial layer structure which has both gain and absorber layers integrated. In contrast to edge-emitters, these lasers have semiconductor layers that can be optimized separately by using different growth parameters and with no regrowth. This is especially important to integrate the gain and absorber layers, which require different quantum confinement. A saturable absorber is required for pulse generation and we optimized its parameters with a single self-assembled InAs quantum dot layer at low growth temperatures. We refer to this class of devices as modelocked integrated external-cavity surface emitting lasers (MIXSEL). Vertical integration supports a diffraction-limited circular output beam, transform-limited pulses, lower timing jitter, and synchronization to an external electronic clock. The pulse repetition rate scales from 1-GHz to 100-GHz by simply changing the laser cavity length. This result holds promise for semiconductor-based high-volume wafer-scale fabrication of compact, ultrafast lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L.F. Mollenauer, P.V. Mamyshev, J. Gripp, M.J. Neubelt, N. Mamysheva, L. Gruner-Nielsen, T. Veng, Opt. Lett. 25, 704 (2000)

    Article  ADS  Google Scholar 

  2. M.J. Kobrinsky, B.A. Block, J.-F. Zheng, B.C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, K. Cadien, Intel Technol. J. 8(2), 129 (2004), available at http://www.intel.com/technology/itj/archive.htm

  3. A. Bhatnagar, C. Debaes, R. Chen, N.C. Helman, G.A. Keeler, D. Agarwal, H. Thienpoint, D.A.B. Miller, “Receiver-less clocking of a CMOS digital circuit using short optical pulses,” presented at 2002 IEEE/LEOS Annual Meeting; Conference Proceedings, 15th Annual Meeting of the IEEE Lasers & Electro-Optics Society, Glasgow, Scotland, 2002

  4. Th. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  5. P. Russell, Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  6. K. Ohki, S. Chung, Y.H. Ch’ng, P. Kara, R.C. Reid, Nature 433, 597 (2005)

    Article  ADS  Google Scholar 

  7. M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, IEEE Photon. Technol. Lett. 9, 1063 (1997)

    Article  ADS  Google Scholar 

  8. J. Chilla, S. Butterworth, A. Zeitschel, J. Charles, A. Caprara, M. Reed, L. Spinelli, “High Power Optically Pumped Semiconductor Lasers,” presented at Photonics West 2004, Solid State Lasers XIII: Technology and Devices, in Proc. SPIE 5332, 2004

  9. J.G. McInerney, A. Mooradian, A. Lewis, A.V. Shchegrov, E.M. Strzelecka, D. Lee, J.P. Watson, M. Liebman, G.P. Carey, B.D. Cantos, W.R. Hitchens, D. Heald, Electron. Lett. 39, 523 (2003)

    Article  Google Scholar 

  10. U. Keller, A.C. Tropper, Phys. Rep. 429, 67 (2006)

    Article  ADS  Google Scholar 

  11. A. Aschwanden, D. Lorenser, H.J. Unold, R. Paschotta, E. Gini, U. Keller, Opt. Lett. 30, 272 (2005)

    Article  ADS  Google Scholar 

  12. D. Lorenser, D.J.H.C. Maas, H.J. Unold, A.R. Bellancourt, B. Rudin, E. Gini, D. Ebeling, U. Keller, IEEE J. Quantum Electron. QE-42, 838 (2006)

    Article  ADS  Google Scholar 

  13. A. Garnache, S. Hoogland, A.C. Tropper, I. Sagnes, G. Saint-Girons, J.S. Roberts, Appl. Phys. Lett. 80, 3892 (2002)

    Article  ADS  Google Scholar 

  14. U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom, Opt. Lett. 17, 505 (1992)

    Article  ADS  Google Scholar 

  15. U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Hönniger, N. Matuschek, J. Aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996)

    Article  Google Scholar 

  16. J.J. Plant, J.T. Gopinath, B. Chann, D.J. Ripin, R.K. Huang, P.W. Juodawlkis, Opt. Lett. 31, 223 (2006)

    Article  ADS  Google Scholar 

  17. U. Keller, Nature 424, 831 (2003)

    Article  ADS  Google Scholar 

  18. G. Steinmeyer, D.H. Sutter, L. Gallmann, N. Matuschek, U. Keller, Science 286, 1507 (1999)

    Article  Google Scholar 

  19. U. Keller, Prog. Opt. 46, 1 (2004)

    Google Scholar 

  20. R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, U. Keller, IEEE J. Quantum Electron. QE-38, 1268 (2002)

    Article  ADS  Google Scholar 

  21. G.J. Spühler, K.J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, U. Keller, Appl. Phys. B 81, 27 (2005)

    Article  ADS  Google Scholar 

  22. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Nature 419, 594 (2002)

    Article  ADS  Google Scholar 

  23. H.Y. Liu, D.T. Childs, T.J. Badcock, K.M. Groom, I.R. Sellers, M. Hopkinson, R.A. Hogg, D.J. Robbins, D.J. Mowbray, M.S. Skolnick, “High-performance three-layer 1.3-mu m InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139 (2005)

    Google Scholar 

  24. E.U. Rafailov, S.J. White, A.A. Lagatsky, A. Miller, W. Sibbett, D.A. Livshits, A.E. Zhukov, V.M. Ustinov, IEEE Photon. Technol. Lett. 16, 2439 (2004)

    Article  ADS  Google Scholar 

  25. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoğlu, Nature 445, 896 (2007)

    Article  ADS  Google Scholar 

  26. Xiaoqin Li, Yanwen Wu, D.G. Steel, D. Gammon, T.H. Stievater, D.S. Katzer, D. Parker, C. Piermarocchi, L.J. Sham, Science 301, 809 (2003)

    Article  ADS  Google Scholar 

  27. R. Leon, P.M. Petroff, D. Leonard, S. Fafard, Science 267, 1966 (1995)

    Article  ADS  Google Scholar 

  28. M.W. Wiemer, R.I. Aldaz, D.A.B. Miller, J.S. Harris, IEEE Photon. Technol. Lett. 17, 1366 (2005)

    Article  ADS  Google Scholar 

  29. S. Malik, C. Roberts, R. Murray, M. Pate, Appl. Phys. Lett. 71, 1987 (1997)

    Article  ADS  Google Scholar 

  30. M. Haiml, R. Grange, U. Keller, Appl. Phys. B 79, 331 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Keller.

Additional information

PACS

42.55.Px; 42.55.Xi; 42.65.Re; 78.47.+p; 78.67.-n; 78.67.Hc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maas, D., Bellancourt, AR., Rudin, B. et al. Vertical integration of ultrafast semiconductor lasers. Appl. Phys. B 88, 493–497 (2007). https://doi.org/10.1007/s00340-007-2760-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2760-1

Keywords

Navigation