, Volume 81, Issue 4, pp 525-530
Date: 29 Jul 2005

Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The first-Stokes conversion efficiency for a stimulated Raman scattering (SRS) is usually very low in gaseous oxygen media. In 3.0 Mpa O2, a single longitudinal mode second harmonic Nd:YAG laser pump source gives a typical vibrational first-Stokes conversion efficiency of only 2.5%, In comparison, the accompanying stimulated Brillouin scattering (SBS) attains a reflectivity of 67%. However, by seeding an OPO beam into the Raman cavity, the first-Stokes photon conversion efficiency now attains a peak value of 54%, while the SBS reflectivity reduces to 5% in a 6.1 Mpa 41:59 O2/ He mixture. This 54% efficiency was obtained for a seeder laser pulse-width less than one half that of pump laser (6.8 ns). A first-Stokes peak power conversion efficiency as high as 88% has been obtained when the pump and seeder pulse peaks coincide. So, we may expect a higher first-Stokes photon conversion efficiency if the seeder pulse-width can be made equal to or larger than that of the pump pulse. On the other hand, the beam quality of the first-Stokes in an O2/ He mixture excels that of the pump laser for a seeder energy of 5 mJ and pump energy of 50 mJ. However, at pump energies higher than 105 mJ and a pump laser repetition rate of 10 Hz, the thermal defocusing effect worsens the first-Stokes beam quality. This thermal defocusing effect is a result of the Raman heat release and could be eliminated by fast circulating and cooling the Raman gas medium.