Applied Physics B

, Volume 78, Issue 7, pp 983–988

Recent developments in X-UV optics and X-UV diagnostics

  • Ph. Zeitoun
  • Ph. Balcou
  • S. Bucourt
  • F. Delmotte
  • G. Dovillaire
  • D. Douillet
  • J. Dunn
  • G. Faivre
  • M. Fajardo
  • K.A. Goldberg
  • S. Hubert
  • J.R. Hunter
  • M. Idir
  • S. Jacquemot
  • S. Kazamias
  • S. le Pape
  • X. Levecq
  • C.L.S. Lewis
  • R. Marmoret
  • P. Mercère
  • A.S. Morlens
  • P.P. Naulleau
  • M.F. Ravet
  • C. Rémond
  • J.J. Rocca
  • R.F. Smith
  • P. Troussel
  • C. Valentin
  • L. Vanbostal
Invited paper

DOI: 10.1007/s00340-004-1430-9

Cite this article as:
Zeitoun, P., Balcou, P., Bucourt, S. et al. Appl Phys B (2004) 78: 983. doi:10.1007/s00340-004-1430-9

Abstract

Metrology of XUV beams (X-ray lasers, high-harmonic generation and VUV free-electron lasers) is of crucial importance for the development of applications. We have thus developed several new optical systems enabling us to measure the optical properties of XUV beams. By use of a Michelson interferometer working as a Fourier-transform spectrometer, the line shapes of different X-ray lasers have been measured with a very high accuracy (Δλ/λ∼10-6). Achievement of the first XUV wavefront sensor has enabled us to measure the beam quality of laser-pumped as well as discharge-pumped X-ray lasers. A capillary discharge X-ray laser has demonstrated a very good wavefront allowing us to achieve an intensity as high as 3×1014 W cm-2 by focusing with a f=5 cm mirror. The sensor accuracy has been measured using a calibrated spherical wave generated by diffraction. The accuracy has been estimated to be as good as λ/120 at 13 nm. Commercial developments are underway. At Laboratoire d’Optique Appliquée, we are setting up a new beamline based on high-harmonic generation in order to start the femtosecond, coherent XUV optic .

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ph. Zeitoun
    • 1
  • Ph. Balcou
    • 2
  • S. Bucourt
    • 3
  • F. Delmotte
    • 4
  • G. Dovillaire
    • 3
  • D. Douillet
    • 2
  • J. Dunn
    • 5
  • G. Faivre
    • 1
  • M. Fajardo
    • 1
  • K.A. Goldberg
    • 6
  • S. Hubert
    • 2
    • 1
  • J.R. Hunter
    • 5
  • M. Idir
    • 1
  • S. Jacquemot
    • 7
  • S. Kazamias
    • 2
  • S. le Pape
    • 1
  • X. Levecq
    • 3
  • C.L.S. Lewis
    • 8
  • R. Marmoret
    • 7
  • P. Mercère
    • 1
  • A.S. Morlens
    • 1
  • P.P. Naulleau
    • 6
  • M.F. Ravet
    • 4
  • C. Rémond
    • 7
  • J.J. Rocca
    • 9
  • R.F. Smith
    • 5
  • P. Troussel
    • 7
  • C. Valentin
    • 2
  • L. Vanbostal
    • 1
  1. 1.Laboratoire d’Interaction du rayonnement X avec la MatièreUniversité Paris-SudOrsayFrance
  2. 2.Laboratoire d’Optique Appliquée, ENSTAChemin de La HunièrePalaiseauFrance
  3. 3.Imagine OpticOrsayFrance
  4. 4.CNRS-UMR 8501Laboratoire Charles Fabbry de l’Institut d’OptiqueOrsayFrance
  5. 5.Lawrence Livermore National LaboratoryLivermoreUSA
  6. 6.Center for X-ray OpticsLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.Commissariat á l’Énergie AtomiqueBruyères-le-ChatelFrance
  8. 8.School of Mathematics and PhysicsThe Queen’s University of BelfastBelfastUK
  9. 9.NSF ERC for Extreme Ultraviolet Science and Technology and Department of Electrical and Computer EngineeringColorado State UniversityFort CollinsUSA