, Volume 77, Issue 2-3, pp 269-277

Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Broadband supercontinuum spectra are generated in a microstructured fiber using femtosecond laser pulses. Noise properties of these spectra are studied through experiments and numerical simulations based on a generalized stochastic nonlinear Schrödinger equation. In particular, the relative intensity noise as a function of wavelength across the supercontinuum is measured over a wide range of input pulse parameters, and experimental results and simulations are shown to be in good quantitative agreement. For certain input pulse parameters, amplitude fluctuations as large as 50% are observed. The simulations clarify that the intensity noise on the supercontinuum arises from the amplification of two noise inputs during propagation – quantum-limited shot noise on the input pulse, and spontaneous Raman scattering in the fiber. The amplification factor is a sensitive function of the input pulse parameters. Short input pulses are critical for the generation of very broad supercontinua with low noise.


42.50.Lc; 42.65.Re; 42.81.Dp; 02.60.Cb
An Erratum to this article can be found at