Applied Physics A

, Volume 69, Issue 3, pp 305–308

Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes

Authors

  • J. Kong
    • Department of Chemistry, Stanford University, Stanford, CA 94305, USA (Fax: +1-650/725-0259, E-mail: hdai@chem.stanford.edu)
  • C. Zhou
    • Department of Chemistry, Stanford University, Stanford, CA 94305, USA (Fax: +1-650/725-0259, E-mail: hdai@chem.stanford.edu)
  • A. Morpurgo
    • Department of Physics, Stanford University, Stanford, CA 94305, USA
  • H.T. Soh
    • E.L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
  • C.F. Quate
    • E.L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
  • C. Marcus
    • Department of Physics, Stanford University, Stanford, CA 94305, USA
  • H. Dai
    • Department of Chemistry, Stanford University, Stanford, CA 94305, USA (Fax: +1-650/725-0259, E-mail: hdai@chem.stanford.edu)
Regular paper

DOI: 10.1007/s003390051005

Cite this article as:
Kong, J., Zhou, C., Morpurgo, A. et al. Appl Phys A (1999) 69: 305. doi:10.1007/s003390051005

Abstract.

High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K.

PACS: 72.80.Rj; 73.61.Wp; 81.05.Tp; 81.15.Gh
Download to read the full article text

Copyright information

© Springer-Verlag 1999