Skip to main content
Log in

On the advantages of loop-based unit-cell’s metallization regarding the angular stability of artificial magnetic conductors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The angular stability of artificial magnetic conductors (AMCs) with hexagonal-shaped and square-shaped, patch-based and loop-based unit-cell’s metallization is studied for comparison. The influence of the gap distance between the unit-cells’ metallization on the overall AMC angular stability, while maintaining the resonance frequency and meeting the specified bandwidth requirements for a given dielectric substrate, is shown for the first-time. This observed phenomenon is explained by means of a simplified equivalent circuit devised for the unit-cells under study. Experimental characterization regarding AMC’s operation bandwidth and angular stability is carried out in an anechoic chamber for an AMC with hexagonal-shaped loop-based unit-cells, since from simulation results it outperforms the other AMCs under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.J. Kern, D.H. Werner, A. Monorchio, L. Lanuzza, M.J. Wilhelm, The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans. Antennas Propag. 53(1), 8–17 (2005)

    Article  ADS  Google Scholar 

  2. D. Sievenpiper, L. Zhang, R.F. Jimenez Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999)

    Article  ADS  Google Scholar 

  3. G. Goussetis, A.P. Feresidis, J.C. Vardaxoglou, Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate. IEEE Trans. Antennas Propag. 54(1), 82–89 (2006)

    Article  ADS  Google Scholar 

  4. M.E. de Cos, F. Las-Heras, Novel uniplanar flexible artificial magnetic conductor. Appl. Phys. A Mater. Sci. Process. 109(4), 1031–1035 (2012)

    Article  ADS  Google Scholar 

  5. M.E. de Cos, Y. Álvarez, R.C. Hadarig, F. Las-Heras, Novel SHF band uniplanar artificial magnetic conductor. IEEE Antennas Wirel. Propag. Lett. 9, 44–47 (2010)

    Article  ADS  Google Scholar 

  6. P. de Maagt, R. Gonzalo, Y. Vardaxoglou, Review on electromagnetic band gap technology and applications. Radio Sci. Bull. 309, 11–25 (2004)

    Google Scholar 

  7. A. Foroozesh, L. Shafai, M. Ng Mou Kehn, Application of polarization and angular dependent artificial ground planes in compact planar high-gain antenna design. Radio Sci. 43, RS6S03, (2008)

  8. A. Erentok, P.L. Luljak, R.W. Ziolkowski, Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans. Antennas Propag. 53(1), 160–172 (2005)

    Article  ADS  Google Scholar 

  9. R.C. Hadarig, M.E. de Cos, Y. Alvarez, F. Las-Heras, Novel Bow-tie–AMC combination for 5.8-GHz RFID tags usable with metallic objects. IEEE Antennas Wirel. Propag. Lett. 9, 1217–1220 (2010)

  10. Y. Junho, R. Mittra, S. Chakravarty, A GA-based design of electromagnetic bandgap (EBG) structures utilizing frequency selective surfaces for bandwidth enhancement of microstrip antennas. IEEE Ant. and Propag. Soc. Int. Symp. 2, 400–403 (2002)

  11. M.A. Hiranandani, A.B. Yakovlev, A.A. Kishk, Artificial magnetic conductors realised by frequency-selective surfaces on a grounded dielectric slab for antenna applications. IEE Proc. Microw. Antennas Propag. 153(5), 487–493 (2006)

    Article  Google Scholar 

  12. O. Luukkonen, F. Costa, C.R. Simovski, A. Monorchio, S.A. Tretyakov, A thin electromagnetic absorber for wide incidence angles and both polarizations. IEEE Trans. Antennas Propag. 57(10), 3119–3125 (2009)

    Article  ADS  Google Scholar 

  13. M.E. de Cos, Y. Alvarez-Lopez, F. Las Heras Andres, A novel approach for RCS reduction using a combination of artificial magnetic conductors. Prog. Electromagn. Res. 107, 147–159 (2010)

    Article  Google Scholar 

  14. J. McVay; A. Hoorfar; N. Engheta, Bandwidth enhancement and polarization dependence elimination of space-filling curve artificial magnetic conductors. Asia-Pacific Microwave Conference 2007. pp.1, 4

  15. L. Akhoondzadeh-Asl, J. Nourinia, C. Ghobadi, P.S. Hall, Influence of element shape on the bandwidth of artificial magnetic conductors. J. Electromag. Waves Appl. 21(7), (2007)

  16. M.E. de Cos, Y. Alvarez, F. Las-Heras, IEEE Antennas Wirel. Propag. Lett. 10, 615–618 (2011)

    Article  Google Scholar 

  17. M. Mantash, M.E. de Cos, A. Tarot, S. Collardey, K. Mahdjoubi, F. Las-Heras, Dual-band textile hexagonal artificial magnetic conductor for WiFi wearable applications. 6th European Conf. on Antennas and Propag. (EUCAP) 2012, pp.1395–1398

  18. M.E. de Cos, F. Las-Heras. Multi-band artificial magnetic conductors with high angular stability. 7th European Conf. on Antennas and Propag. (EuCAP). 2510–2512, 8–12 (2013)

  19. A. Foroozesh, L. Shafai, On the scattering analysis methods of and reflection characteristics for an AMC/AEC surface. IEEE Antennas Propag. Mag. 5, 71–90 (2010)

    Article  Google Scholar 

  20. A. Foroozesh, L. Shafai, Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas. IEEE Trans. Antennas Propag. AP-59(1), 4–20 (2011)

    Article  Google Scholar 

  21. A. Foroozesh, L. Shafai, Effects of artificial magnetic conductors in the design of low-profile high-gain planar antennas with high-permittivity dielectric superstrate. IEEE Antennas Wirel. Propag. Lett. 8, 10–13 (2009)

    Article  ADS  Google Scholar 

  22. A. Foroozesh, L. Shafai, Application of combined electric and magnetic conductor ground planes for antenna performance enhancement. Can. J. electr. comput. eng. 33, 87–98 (2008)

    Article  Google Scholar 

  23. C.R. Simovski, A.A. Sochava, High-impedance surfaces based on self-resonant grids. Analytical modelling and numerical simulations. Prog. Electromagn. Res. 43, 239–256 (2003)

    Article  Google Scholar 

  24. C.R. Simovski, P. de Maagt, S.A. Tretyakov, M. Paquay, A.A. Sochava, Angular stabilisation of resonant frequency of artificial magnetic conductors for TE-incidence. Electron. Lett. 40(2), 92–93 (2004)

    Article  Google Scholar 

  25. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Raisanen, S.A. Tretyakov, Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag. 56(6), 1624–1632 (2008)

    Article  ADS  Google Scholar 

  26. M. Grelier, F. Linot, A.C. Lepage, X. Begaud, J.M. Le Mener; M. Soiron. Analytical methods for AMC and EBG characterisations. Appl. Phys. A: Mater. Sci. Process. 102, N.2, (2011)

  27. Y. Zhu, A. Bossavit, S. Zouhdi, Surface impedance models for high impedance surfaces. Appl. Phys. A Mater. Sci. Process. 103(3), 677–683 (2011)

    Article  ADS  Google Scholar 

  28. I. Anderson, On the theory of self-resonant grids. Bell Syst. Tech. J. 54, 1725–1731 (1975)

    Article  ADS  Google Scholar 

  29. M. Hosseini, M. Hakkak, Characteristics estimation for jerusalem cross-based artificial magnetic conductors. IEEE Antennas Wirel. Propag. Lett. 7, 58–61 (2008)

    Article  ADS  Google Scholar 

  30. C.R. Simovski, P.D. Maagt, I.V. Melchakova, High-impedance surfaces having stable resonance with respect to polarization and incidence angle. IEEE Trans. Antennas Propag. 53(3), 908–914 (2005)

    Article  ADS  Google Scholar 

  31. M. Hosseini, A. Pirhadi, M. Hakkak, A novel AMC with little sensitivity to the angle of incidence using 2-layer Jerusalem cross FSS. Prog. Electromagn. Res. 64, 43–51 (2006)

    Article  Google Scholar 

  32. R.J. Langley, E.A. Parker, Double square frequency selective surfaces and their equivalent circuit. Electron. Lett. 19, 675–677 (1983)

    Article  ADS  Google Scholar 

  33. L. Lanuzza, A. Monorchio, D.J. Kern, D.H. Werner, A robust GA-FSS technique for the synthesis of optimal multiband AMCs with angular stability. IEEE Antennas. Propag. Soc. Int. Symp. 2, 419–422 (2003)

    Google Scholar 

  34. Y. Ranga, L. Matekovits, K.P. Esselle and A.R. Weily, Oblique incidence performance of UWB frequency selective surfaces for reflector applications. IEEE Int. Symp. on Antennas and Propag. (APSURSI), 3170–3173, 3–8 (2011)

  35. R. Rodriguez-Berral, C. Molero, F. Medina, F. Mesa, Analytical wideband model for strip/slit gratings loaded with dielectric slabs. IEEE Trans. Microw. Theory Tech. 60(12), 3908–3918 (2012)

    Article  ADS  Google Scholar 

  36. R. Mittra, C.H. Chan, T. Cwik, Techniques for analysing frequency selective surfaces—a review. Proc. IEEE 76, 1593–1615 (1988)

    Article  ADS  Google Scholar 

  37. D. Ramaccia, A. Toscano, F. Bilotti, A new accurate model of high-impedance surfaces consisting of circular patches. Prog. Electromagn. Res. M 21, 1–17 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministerio de Economía y Competitividad of Spain/FEDER under projects CONSOLIDER-INGENIO CSD2008-00068 (TERASENSE) and TEC2011-24492 (iScat) and by European Union 7th FP under project ICT-2011-9600849 (INSIDDE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. de Cos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cos, M.E., Las-Heras, F. On the advantages of loop-based unit-cell’s metallization regarding the angular stability of artificial magnetic conductors. Appl. Phys. A 118, 699–708 (2015). https://doi.org/10.1007/s00339-014-8782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8782-8

Keywords

Navigation