Skip to main content
Log in

Structural and optical properties of H2 diluted c-Si/a-SiO x core-shell silicon nanowire

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We observed photoluminescence quenching in crystalline (c) Si/amorphous (a) SiO x core-shell silicon nanowires (Si-NWs). We observed that the photoluminescence (PL) intensity strongly depends on the stoichiometry of outer a-SiO x matrix, which was characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The PL showed a broad-range emission from 1.6 to 2.4 eV with the peak centered at 2.27 eV, which quenched as the oxygen content decreased from 60.5 to 54.6 at.%. Both transverse optic and longitudinal optic signatures of Si–O–Si were shifted to lower wavenumbers, which indicate the modification of chemical networks in core-shell Si-NWs. The minority carrier life time (τ) increased from 3.4 to 7.5 µs as the diameter of core Si increased from 22 to 78 nm, indicating the decrease of trap densities and alternation trap states. The reason for PL quenching is mostly attributed to the structural and stoichiometry changes in outer a-SiO x of c-Si/a-SiO x -NW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Leiber, Nano Lett. 2, 149–192 (2003)

    Article  ADS  Google Scholar 

  2. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885–889 (2007)

    Article  ADS  Google Scholar 

  3. O. Hayden, A.B. Greytak, D.C. Bell, Adv. Mater. 17, 701–703 (2005)

    Article  Google Scholar 

  4. I. Park, Z. Li, X. Li, A.P. Pisano, R.S. Williams, Biosens. Bioelectron. 22, 2065–2070 (2007)

    Article  Google Scholar 

  5. L. Ding, T.P. Chen, Y. Liu, C.Y. Ng, S. Fung, Phys. Rev. B, 72, 125419–125419-7 (2005)

  6. M. Lauerhaas, M.J. Sailor, Science 261, 1567–1568 (1993)

    Article  ADS  Google Scholar 

  7. Y.J. Jung, J.H. Yoon, J. Korean Phys. Soc. 53, 2670–2673 (2008)

    Article  ADS  Google Scholar 

  8. T. Wadayama, T. Arigane, K. Hayamizu, A. Hatta, Mater. Trans. 43, 2832–2837 (2002)

    Article  Google Scholar 

  9. S.Y. Seo, J.H. Shin, Appl. Phys. Lett. 75, 4070–4072 (1999)

    Article  ADS  Google Scholar 

  10. H. Jang, L.E. Pell, B.A. Korgel, D.S. English, J. Photochem. Photobiol. A: Chem. 158, 111–117 (2003)

    Article  Google Scholar 

  11. D. Andsager, J. Hilliard, J.M. Hetrick, L.H. AbuHassan, M. Plisch, M.H. Nayfeh, J. Appl. Phys. 74, 4783–4785 (1993)

    Article  ADS  Google Scholar 

  12. B.S. Swain, S.S. Lee, S.H. Lee, B.P. Swain, N.M. Hwang, Chem. Phys. Lett. 494, 269–273 (2010)

    Article  ADS  Google Scholar 

  13. B.S. Swain, B.P. Swain, N.M. Hwang, J. Phys. Chem. C 114, 15274–15279 (2010)

    Article  Google Scholar 

  14. B.S. Swain, S.S. Lee, S.H. Lee, B.P. Swain, N.M. Hwang, J. Cryst. Growth 327, 276–280 (2011)

    Article  ADS  Google Scholar 

  15. I.D. Wolf, Semicond. Sci. Technol. 11, 139–154 (1996)

    Article  ADS  Google Scholar 

  16. A. Torres, A. Martín-Martín, O. Martínez, A.C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, T. Rodríguez, Appl. Phys. Lett. 96, 011904–011904-2 (2010)

  17. N.V. Tzenov, M.B. Tzolov, D.I. Dimova-Malinovska, Semicond. Sci. Technol. 9, 91–96 (1994)

    Article  ADS  Google Scholar 

  18. S. Khachadorian, H. Scheel, M. Cantoro, A. Colli, A.C. Ferrari, C. Thomsen, Phys. Status Solidi B247, 3084–3088 (2010)

    Article  Google Scholar 

  19. B.P. Swain, R.O. Dusane, Mater. Lett. 60, 2915–2919 (2006)

    Article  Google Scholar 

  20. S.-H. Lin, B.J. Feldman, D. Li, Appl. Phys. Lett. 69, 2373 (1996)

    Article  ADS  Google Scholar 

  21. J. Wang, M.K. Kuimova, M. Poliakoff, G.A.D. Briggs, A.N. Khlobystov, Angew. Chem. Int. Ed. 45, 5188–5191 (2006)

    Article  Google Scholar 

  22. A. Je, Semjonow, E. Anastassakis, Physica A 201, 416–420 (1993)

    Article  Google Scholar 

  23. Y.H. Tang, Y.F. Zheng, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 328, 346–349 (2000)

    Article  ADS  Google Scholar 

  24. Y.D. Glinka, S.H. Lin, L.P. Hwang, Y.T. Chen, Appl. Phys. Lett. 77, 3968–3970 (2000)

    Article  ADS  Google Scholar 

  25. E. Fois, E.A. Gamba, E.G. Tabacchi, E.S. Coluccia, E.G. Martra, J. Porous Mater. 14, 339–347 (2007)

    Article  Google Scholar 

  26. Y. Chen, Q. Zhou, H. Jiang, Y. Su, H. Xiao, L. Zhu, L. Xu, Nanotechnology 17, 1022–1025 (2006)

    Article  ADS  Google Scholar 

  27. J.M. Lavine, S.P. Sawan, Y.T. Shieh, A.J. Bellezza, Appl. Phys. Lett. 62, 1099–1100 (1993)

    Article  ADS  Google Scholar 

  28. S. Hasegawa, L. He, T. Inokuma, Y. Kurata, Phys. Rev. B 46, 12478–12484 (1992)

    Article  ADS  Google Scholar 

  29. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1998)

    Google Scholar 

  30. B.S. Swain, B.P. Swain, N.M. Hwang, Mat. Chem. Phys. 129, 733–739 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Brain Korea (BK plus), Korea program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani Sankar Swain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, B.S., Swain, B.P., Mahmood, K. et al. Structural and optical properties of H2 diluted c-Si/a-SiO x core-shell silicon nanowire. Appl. Phys. A 118, 269–274 (2015). https://doi.org/10.1007/s00339-014-8675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8675-x

Keywords

Navigation