Skip to main content
Log in

Present and future applications of magnetic nanostructures grown by FEBID

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Utke, P. Hoffmann, R. Berger, L. Scandella, High-resolution magnetic Co supertips grown by a focused electron beam. Appl. Phys. Lett. 80, 4792–4794 (2002)

    Article  ADS  Google Scholar 

  2. G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R.S. Popovic, P. Hoffmann, Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl. Phys. Lett. 86, 042503 (2005)

    Article  ADS  Google Scholar 

  3. A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D Appl. Phys. 42, 055005 (2009)

    Article  ADS  Google Scholar 

  4. L. Serrano-Ramón, R. Córdoba, L.A. Rodríguez, C. Magen, E. Snoeck, C. Gatel, I. Serrano, M.R. Ibarra, J.M. De Teresa, Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5, 7781–7787 (2011)

    Article  Google Scholar 

  5. A. Fernandez-Pacheco, L. Serrano-Ramón, J. Michalik, M.R. Ibarra, J.M. De Teresa, L. O’Brien, D. Petit, J. Lee, R.P. Cowburn, Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 3, 1492 (2013)

    Article  ADS  Google Scholar 

  6. J.M. De Teresa, A. Fernandez-Pacheco, L. Serrano-Ramón, R. Córdoba, M.R. Ibarra, Fabrication of magnetic nanostructures by focused electron beam induced deposition (FEBID). J. Phys. D: Appl. Phys. (manuscript in preparation)

  7. Y.M. Lau, P.C. Chee, J.T.L. Thong, V. Ng, Properties and applications of cobalt-based material produced by electron-beam-induced deposition. J. Vac. Sci. Technol. A 20, 1295 (2002)

    Article  ADS  Google Scholar 

  8. A. Lapicki, E. Ahmad, T. Suzuki, Ion beam induced chemical vapor deposition (IBICVD) of cobalt particles. J. Magn. Magn. Mater. 240, 47–49 (2002)

    Article  ADS  Google Scholar 

  9. G. Leven, G. Dumpich, Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys. Rev. B 71, 064411 (2005)

    Article  ADS  Google Scholar 

  10. W. Gil, D. Görlitz, M. Horisberger, J. Kötzler, Magnetoresistance anisotropy of polycrystalline cobalt films: geometrical-size and domain effects. Phys. Rev. B 72, 134401 (2005)

    Article  ADS  Google Scholar 

  11. R. Córdoba, R. Fernández-Pacheco, A. Fernández-Pacheco, A. Gloter, C. Magén, O. Stéphan, M.R. Ibarra, J.M. De Teresa, Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM. Nanoscale Res. Lett. 6, 592 (2011)

    Article  ADS  Google Scholar 

  12. A. Fernández-Pacheco, J.M. De Teresa, A. Szkudlarek, R. Córdoba, M.R. Ibarra, D. Petit, L. O’Brien, H.T. Zeng, E.R. Lewis, D.E. Read, R.P. Cowburn, Magnetization reversal in individual cobalt micro- and nano-wires grown by focused-electron-beam-induced-deposition. Nanotechnology 20, 475704 (2009)

    Article  ADS  Google Scholar 

  13. A. Himeno, T. Okuno, K. Mibu, S. Nasu, T. Shinjo, Temperature dependence of depinning fields in submicron magnetic wires with an artificial neck. J. Magn. Magn. Mater. 286, 167–170 (2005)

    Article  ADS  Google Scholar 

  14. A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn, Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition. Appl. Phys. Lett. 94, 192509 (2009)

    Article  ADS  Google Scholar 

  15. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Magnetic domain-wall logic. Science 309, 1688–1692 (2005)

    Article  ADS  Google Scholar 

  16. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)

    Article  ADS  Google Scholar 

  17. R. Mattheis, S. Glathe, M. Diegel, U. Hübner, Concepts and steps for the realization of a new domain wall based giant magnetoresistance nanowire device: from the available 24 multiturn counter to a 212 turn counter. J. Appl. Phys. 111, 113920 (2012)

    Article  ADS  Google Scholar 

  18. R.P. Cowburn, D. Petit, Spintronics: turbulence ahead. Nat. Mater. 4, 721–722 (2005)

    Article  ADS  Google Scholar 

  19. M. Takeguchi, M. Shimojo, K. Furuya, Fabrication of magnetic nanostructures using electron beam induced chemical vapour deposition. Nanotechnology 16, 1321–1325 (2005)

    Article  ADS  Google Scholar 

  20. T. Luckasczyk, M. Schirmer, H.P. Steinrück, H. Marbach, Electron-beam-induced deposition in ultra-high vacuum: lithographic fabrication of clean iron nanostructures. Small 4, 841–846 (2008)

    Article  Google Scholar 

  21. R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. de Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders, Fe:O: C grown by focused-electron-beam-induced deposition: magnetic and electric properties. Nanotechnology 22, 025302 (2011)

    Article  ADS  Google Scholar 

  22. M. Gavagnin, H.D. Wanzenboeck, D. Belic, E. Bertagnolli, Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7, 777–784 (2013)

    Article  Google Scholar 

  23. R. Córdoba, R. Lavrijsen, A. Fernandez-Pacheco, M.R. Ibarra, F. Schoenaker, T.H. Ellis, B. Barcones-Campo, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.J.L. Mulders, J.M. de Teresa, Giant anomalous Hall effect in Fe-based microwires grown by focused-electron-beam-induced deposition. J. Phys. D Appl. Phys. 45, 035001 (2012)

    Article  ADS  Google Scholar 

  24. R.C. Che, M. Takeguchi, M. Shimojo, W. Zhang, K. Furuya, Fabrication and electron holography characterization of FePt alloy nanorods. Appl. Phys. Lett. 87, 223109 (2005)

    Article  ADS  Google Scholar 

  25. Q.Y. Xu, Y. Kageyama, T. Suzuki, Ion-beam-induced chemical-vapor deposition of FePt and CoPt particles. J. Appl. Phys. 97, 10K308 (2005)

    Google Scholar 

  26. L. Bernau, M. Gabureac, R. Erni, I. Utke, Tunable nanosynthesis of composite materials by electron-impact reaction. Angew. Chem. Int. Ed. 49, 8880–8884 (2010)

    Article  Google Scholar 

  27. M.S. Gabureac, L. Bernau, I. Utke, Granular Co–C nano-Hall sensors by focused-beam-induced deposition. Nanotechnology 21, 115503 (2010)

    Article  ADS  Google Scholar 

  28. E. Nikulina, O. Idigoras, P. Vavassori, A. Chuvilin, A. Berger, Magneto-optical magnetometry of individual 30 nm cobalt nanowires grown by electron beam induced deposition. Appl. Phys. Lett. 100, 142401 (2012)

    Article  ADS  Google Scholar 

  29. G.C. Gazzadi, J.J.L. Mulders, P. Trompenaars, A. Ghirri, A. Rota, M. Affronte, S. Frabboni, Characterization of a new cobalt precursor for focused beam deposition of magnetic nanostructures. Microelectron. Eng. 88, 1955–1958 (2011)

    Article  Google Scholar 

  30. M. Jafaar, L. Serrano-Ramón, O. Iglesias-Freire, A. Fernández-Pacheco, M.R. Ibarra, J.M. de Teresa, A. Asenjo, Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy. Nanoscale Res. Lett. 6, 407 (2011)

    Article  ADS  Google Scholar 

  31. R.P. Cowburn, Property variation with shape in magnetic nanoelements. J. Phys. D Appl. Phys. 33, R1–R16 (2000)

    Article  ADS  Google Scholar 

  32. M. Gavagnin, H.D. Wanzenboeck, D. Belic, M.M. Shawrav, A. Persson, K. Gunnarsson, P. Svendlindh, E. Bertagnolli, Magnetic force microscopy study of shape engineered FEBID iron nanostructures. Phys. Status Solidi A 211, 368–374 (2013)

    Article  Google Scholar 

  33. S. Sangiao, L. Morellon, M.R. Ibarra, J.M. De Teresa, Ferromagnet-superconductor nanocontacts grown by focused electron/ion beam techniques for current-in-plane Andreev reflection measurements. Solid State Commun. 151, 37–41 (2011)

    Article  ADS  Google Scholar 

  34. P. Bruno, Geometrically constrained magnetic wall. Phys. Rev. Lett. 83, 2425 (1999)

    Article  ADS  Google Scholar 

  35. B. Doudin, M. Viret, Ballistic magnetoresistance? J. Phys. Condens. Matter 20, 083201 (2008)

    Article  ADS  Google Scholar 

  36. A. Fernández-Pacheco, L.E. Serrano-Ramón, T. Tyliszczak, K.W. Chou, R. Córdoba, A. Szkudlarek, L. O’Brien, C. Kapusta, M.R. Ibarra, J.M. De Teresa, Correlation between the magnetic imaging of cobalt nanoconstrictions and their magnetoresistance response. Nanotechnology 23, 105703 (2012)

    Article  ADS  Google Scholar 

  37. C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J.P. Jamet, J. Ferre, C. Chappert, T. Devolder, V. Mathet, H. Bernas, Modifications of magnetic properties of Pt/Co/Pt thin layers by focused gallium ion beam irradiation. J. Appl. Phys. 91, 3103 (2002)

    Article  ADS  Google Scholar 

  38. D. Ozkaya, R.M. Langford, W.L. Chan, A.K.J. Petford-Long, Effect of Ga implantation on the magnetic properties of permalloy thin films. J. Appl. Phys. 91, 9937 (2002)

    Article  ADS  Google Scholar 

  39. L. Serrano-Ramón, A. Fernández-Pacheco, M.R. Ibarra, T. Tyliszczak, J.M. De Teresa, Modification of domain-wall propagation in Co nanowires via Ga+ irradiation. Eur. Phys. J. B 86, 97 (2013)

    Article  ADS  Google Scholar 

  40. D. Petit, A.-V. Jausovec, H.T. Zeng, E. Lewis, L. O’Brien, D. Read, R.P. Cowburn, High efficiency domain wall gate in ferromagnetic nanowires. Appl. Phys. Lett. 93, 163108 (2008)

    Article  ADS  Google Scholar 

  41. L. Serrano-Ramón, A. Fernández-Pacheco, R. Córdoba, C. Magen, L.A. Rodríguez, D. Petit, R.P. Cowburn, M.R. Ibarra, J.M. De Teresa, Improvement of domain wall conduit properties in cobalt nanowires by global gallium irradiation. Nanotechnology 24, 345703 (2013)

    Article  Google Scholar 

  42. E. Nikulina, O. Idigoras, J.M. Porro, P. Vavassori, A. Chuvilin, A. Berger, Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures. Appl. Phys. Lett. 103, 123112 (2013)

    Article  ADS  Google Scholar 

  43. A. Fert, L. Piraux, Magnetic nanowires. J. Magn. Magn. Mater. 200, 338 (1999)

    Article  ADS  Google Scholar 

  44. F. Porrati, E. Begun, M. Winhold, C.H. Schwalb, R. Sachser, A.S. Frangakis, M. Huth, Room temperature L1(0) phase transformation in binary CoPt nanostructures prepared by focused-electron-beam-induced deposition. Nanotechnology 23, 185702 (2012)

    Article  ADS  Google Scholar 

  45. F. Porrati, B. Kämpken, A. Terfort, M. Huth, Fabrication and electrical transport properties of binary Co–Si nanostructures prepared by focused electron beam-induced deposition. J. Appl. Phys. 113, 053707 (2013)

    Article  ADS  Google Scholar 

  46. M.T. Niemier, G.H. Bernstein, G. Csaba, A. Dingler, X.S. Hu, S. Kurtz, S. Liu, J. Nahas, W. Porod, M. Siddiq, E. Varga, Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011)

    Article  Google Scholar 

  47. A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, W. Porod, Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205 (2006)

    Article  ADS  Google Scholar 

  48. Nanotools website: http://www.nanotools.com/

  49. L.M. Belova, O. Hellwig, E. Dobisz, E. Dan, Dahlberg, rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution. Rev. Sci. Instrum. 83, 093711 (2012)

    Article  ADS  Google Scholar 

  50. S.M. Thompson, The discovery, development and future of GMR: the Nobel Prize 2007. J. Phys. D Appl. Phys. 41, 093001 (2008)

    Article  ADS  Google Scholar 

  51. J. Sinova, I. Zutic, New moves of the spintronics tango. Nat. Mater. 11, 368 (2012)

    Article  ADS  Google Scholar 

  52. L. O’Brien, D. Petit, E.R. Lewis, R.P. Cowburn, D.E. Read, J. Sampaio, H.T. Zeng, A.-V. Jausovec, Tunable remote pinning of domain walls in magnetic nanowires. Phys. Rev. Lett. 106, 087204 (2011)

    Article  ADS  Google Scholar 

  53. J.H. Franken, M. Hoeijmakers, H.J.M. Swagten, B. Koopmans, Tunable resistivity of magnetic domain walls. Phys. Rev. Lett. 108, 037205 (2012)

    Article  ADS  Google Scholar 

  54. W.F. van Dorp, B. van Someren, C.W. Hagen, P. Kruit, Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nano Lett. 5, 1303 (2005)

    Article  ADS  Google Scholar 

  55. J.M. De Teresa, R. Córdoba, Arrays of densely-packed isolated nanowires by focused beam induced deposition plus Ar+ milling. ACS Nano. 8(4), 3788–3795 (2014)

    Article  Google Scholar 

  56. J.H. Franken, M.A.J. van der Heijden, T.H. Ellis, R. Lavrijsen, C. Daniels, D. McGrouther, H.J.M. Swagten, B. Koopmans, Beam-induced Fe nanopillars as tunable domain-wall pinning sites. Adv. Funct. Mater. 24(23), 3508–3514 (2014). doi:10.1002/adfm.201303540

    Article  Google Scholar 

  57. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422, 65 (2005)

    Article  ADS  Google Scholar 

  58. J.M. De Teresa, P. Holuj, R. Córdoba, R. Fernández-Pacheco, J.M. Michalik, Fabrication of cobalt trifluoride (CoF3) phase from metallic cobalt by XeF2-assisted focused electron bean induced processing. Microelectron. Eng. 125, 78–82 (2014). doi:10.1016/j.mee.2014.01.002

    Article  Google Scholar 

  59. E.O. Wollan, Magnetic coupling in crystalline compounds. A phenomenological theory of magnetism in 3d metals. Phys. Rev. B 117, 387 (1960)

    Article  ADS  Google Scholar 

  60. B. Pigeau, C. Hahn, G. de Loubens, V.V. Naletov, O. Klein, K. Mitsuzuka, D. Lacour, M. Hehn, S. Andrieu, F. Montaigne, Measurement of the dynamical dipolar coupling in a pair of magnetic nanodisks using a ferromagnetic resonance force microscope. Phys. Rev. Lett. 109, 247602 (2012)

    Article  ADS  Google Scholar 

  61. H.-J. Chia, F. Guo, L.M. Belova, R.D. McMichael, Spectroscopic defect imaging in magnetic nanostructure arrays. Appl. Phys. Lett. 101, 042408 (2012)

    Article  ADS  Google Scholar 

  62. H. Lavenant, V.V. Naletov, O. Klein, G. de Loubens, L. Casado, J.M. De Teresa, Mechanical magnetometry of cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers. Nanofabrication 1, 65–73 (2014)

    Article  Google Scholar 

  63. M.S. Gabureac, L. Bernau, G. Boero, I. Utke, Single superparamagnetic bead detection and direct tracing of beadposition using novel nanocomposite nano-Hall sensors. IEEE Trans. Nanotechnol. 12, 668–673 (2013)

    Article  Google Scholar 

  64. D. Serrate, J.M. De Teresa, C. Marquina, J. Marzo, D. Saurel, F.A. Cardoso, S. Cardoso, P.P. Freitas, M.R. Ibarra, Quantitative biomolecular sensing station based on magnetoresistive patterned arrays. Biosci. Bioelectron. 35, 206–212 (2012)

    Article  Google Scholar 

  65. S. Reyntjens, R. Puers, A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287–300 (2001)

    Article  ADS  Google Scholar 

  66. L.A. Rodríguez, C. Magén, E. Snoeck, L. Serrano-Ramón, C. Gatel, R. Córdoba, E. Martínez-Vecino, L. Torres, J.M. De Teresa, M.R. Ibarra, Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy. Appl. Phys. Lett. 102, 022418 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We warmly acknowledge all our local collaborators in this field along the last years: Rosa Córdoba, Luis Serrano-Ramón, Ricardo Ibarra, Laura Casado, Soraya Sangiao, César Magén, Luis Alfredo Rodríguez, Rodrigo Fernández-Pacheco, Inés Serrano, Jan Marek Michalik, Luis Morellón, Rubén Valero, Isabel Rivas, Gala Simón as well as our external collaborators: E. Snöeck and C. Gatel (CEMES), A. Asenjo, M. Jaafar and Oscar Iglesias-Freire (ICMM), R.Cowburn, D. Petit, L. O’ Brien, J.Lee, H. T. Zeng, E. R. Lewis and D. E. Read (U. Cambridge), G.de Loubens, H. Lavenant, V. V. Naletov and O. Klein, (CEA Saclay), Cz. Kapusta, P. Holuj and A. Szkudlarek (AGH University-Cracow), B. Koopmans, R. Lavrijsen F. J. Schoenaker, T. Ellis, B. Barcones, J. T. Kohlhepp and H. J. M. Swagten, (Eindhoven Technical University), J. J. L. Mulders and P. Trompenaars (FEI), O. Stéphan and A. Gloter (LPS Orsay), I. Utke and M. S. Gabureac (EMPA), T. Tyliszczak and K. W. Chou (ALS, Berkeley), L. Torres and E. Martínez-Vecino (U. Salamanca). This work was supported by Spanish Ministry of Economy and Competitivity through project No. MAT2011- 27553-C02, including FEDER funds, by the Aragón Regional Government, by the I-LINK0026 project funded by the Spanish CSIC and by a Marie Curie Intra European Fellowship project No. 251698: 3DMAGNANOW, funded by the 7th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. M. De Teresa or A. Fernández-Pacheco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Teresa, J.M., Fernández-Pacheco, A. Present and future applications of magnetic nanostructures grown by FEBID. Appl. Phys. A 117, 1645–1658 (2014). https://doi.org/10.1007/s00339-014-8617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8617-7

Keywords

Navigation