Applied Physics A

, Volume 116, Issue 4, pp 1757–1760

Enhanced performance of InGaN light-emitting diodes with InGaN and composition-graded InGaN interlayers

Article

DOI: 10.1007/s00339-014-8321-7

Cite this article as:
Yang, YJ. & Zeng, YP. Appl. Phys. A (2014) 116: 1757. doi:10.1007/s00339-014-8321-7

Abstract

The effects of InGaN light-emitting diodes (LEDs) with InGaN and composition-graded InGaN interlayers in the space of multiple quantum wells and electron blocking layer are studied numerically. The electrostatic field, energy band diagrams, carrier concentrations, light–current–voltage performances, and internal quantum efficiency (IQE) are investigated. Simulation results show that the light output power and IQE are both largely improved over the conventional LED structure due to the improvement in hole injection efficiency and electron blocking capability, especially for the LED with composition-graded InGaN interlayer.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Semiconductor Materials ScienceInstitute of Semiconductors, CASBeijingPeople’s Republic of China

Personalised recommendations