Applied Physics A

, Volume 114, Issue 2, pp 309–313

Advantages of blue InGaN light-emitting diodes without an electron-blocking layer by using AlGaN step-like barriers

  • Jian-Yong Xiong
  • Yi-Qin Xu
  • Shu-Wen Zheng
  • Guang-Han Fan
  • Tao Zhang
Rapid communication

DOI: 10.1007/s00339-013-8069-5

Cite this article as:
Xiong, JY., Xu, YQ., Zheng, SW. et al. Appl. Phys. A (2014) 114: 309. doi:10.1007/s00339-013-8069-5

Abstract

With the purpose to increase the uniformity of carrier distribution without sacrificing the enhancement of carrier injection efficiency, the light-emitting diodes (LEDs) without an electron-blocking layer (EBL) by using AlGaN step-like barriers (SLBs) is proposed and investigated numerically. The simulation results show that the enhanced electron confinement and hole injection efficiency are mainly attributed to the mitigated downward band bending induced by polarization field at the interface of the last barrier and EBL and the increased carrier distribution uniformity is due to step-like potential height for carrier of the new designed LEDs. In addition, the distribution of radiative recombination rate and the efficiency droop are markedly improved when the conventional GaN barriers are replaced by AlGaN SLBs and the EBL is removed.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jian-Yong Xiong
    • 1
  • Yi-Qin Xu
    • 2
  • Shu-Wen Zheng
    • 1
  • Guang-Han Fan
    • 1
  • Tao Zhang
    • 1
  1. 1.Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and TechnologySouth China Normal UniversityGuangzhou China
  2. 2.Guangdong General Research Institute for Industrial TechnologyGuangzhou China

Personalised recommendations