Skip to main content
Log in

Dielectric characterization of semiconducting ZnPc films sandwiched between Gold or Aluminum electrodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dependencies of complex dielectric functions (the dielectric constant, ε 1, and the dielectric loss, ε 2), on frequency and temperature of zinc phthalocyanine (ZnPc) thin films sandwiched between either gold or aluminum Ohmic-electrode contacts have been investigated in the temperature range of 93–470 K and frequency range 0.1–20 kHz. It is found that both values of ε 1 and ε 2 decrease with increasing frequency and increase with decreasing temperature. The rate of change depends greatly on the temperature and frequency ranges under consideration. Around room temperature, neither ε 1 nor ε 2 show any appreciable change through the whole range of frequencies. Thus, the dielectric dispersion is found to include of both dipolar and interfacial polarizations. The dependencies of both dielectric functions on frequency at different temperatures were found to follow a universal power law of the form ω n, where the index 0<n≤−1. This indicates that the correlated barrier hopping (CBH) model is a suitable mechanism to describe the dielectric behavior in ZnPc films. Furthermore, the results of the dielectric response indicate that polarization in these films could be in the form of non-Debye polarization. However, the Debye polarization can be traced below room temperature. The obtained results of the relaxation-time, τ, dependency on temperature have shown that a thermally-activated process may be dominated in ZnPc thin films conduction at high temperatures. Partial phase transition (from α- to β-phase) has been observed around 400 K in molecular relaxation-time, τ, and optical dielectric constant, ε . Arrhenius behavior has been observed for all the dielectric loss and conductivity relaxation-times above room temperature and their activation energies are explained and reported. The optical dielectric constant ε was found to increase with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Yakuphanoglu, M. Arslan, Solid State Commun. 132, 229 (2004)

    Article  ADS  Google Scholar 

  2. N. Padma, A. Joshi, A. Singh, S.K. Deshpande, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, Sens. Actuators B 143, 246 (2009)

    Article  Google Scholar 

  3. J. Zhang, J. Wang, H. Wang, D. Yan, Appl. Phys. Lett. 84, 142 (2004)

    Article  ADS  Google Scholar 

  4. C.J. Tonzola, M.M. Alam, S.A. Jenekhe, Adv. Mater. 14, 1086 (2002)

    Article  Google Scholar 

  5. T.L. Anderson, G.C. Komplin, W. Pietro, J. Phys. Chem. 97, 6577 (1993)

    Article  Google Scholar 

  6. J. Xue, S.R. Forrest, Appl. Phys. Lett. 82, 136 (2003)

    Article  ADS  Google Scholar 

  7. D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery, G. Haas, Appl. Phys. Lett. 85(23), 5763 (2004)

    Article  ADS  Google Scholar 

  8. S.A. Jenekhe, S. Yi, Appl. Phys. Lett. 77, 2635 (2000)

    Article  ADS  Google Scholar 

  9. J. Drechsel, B. Maennig, F. Kolzowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, M. Pfeiffer, Thin Solid Films 451–452, 515 (2004)

    Article  Google Scholar 

  10. U. Drechsler, M. Pfaff, M. Hanack, Eur. J. Org. Chem. 1999, 3441 (1999)

    Article  Google Scholar 

  11. M. Fadel, K. Kassab, D.A. Fadeel, Lasers Med. Sci. 25, 283 (2010)

    Article  Google Scholar 

  12. L. Gao, X. Qian, L. Zhang, Y. Zhang, J. Photochem. Photobiol. 65, 35 (2001)

    Article  Google Scholar 

  13. A.M. Saleh, A.K. Hassan, R.D. Gould, Phys. Status Solidi A 139, 379 (1993)

    Article  ADS  Google Scholar 

  14. N.M. Amer, A.M. Saleh, R.D. Gould, Appl. Phys. A 76, 77 (2003)

    Article  ADS  Google Scholar 

  15. A.A. Atta, J. Alloys Compd. 480, 564 (2009)

    Article  Google Scholar 

  16. G.H. Heilmeier, S.E. Harrison, Phys. Rev. 132, 2023 (1963)

    Article  ADS  Google Scholar 

  17. A.O. Abu-Hilal, A.M. Saleh, R.D. Gould, Mater. Chem. Phys. 94, 165 (2005)

    Article  Google Scholar 

  18. A.O. Abu-Hilal, R.D. Gould, M.I. Abu-Taha, A.M. Saleh, Int. J. Mod. Phys. B 21, 55 (2007)

    Article  ADS  Google Scholar 

  19. G.A. Rosquete-Pina, C. Zorilla, S.V. Velumani, J. Arenas-Alatorre, J.A. Ascencio, Appl. Phys. A 79, 1913 (2004)

    Article  ADS  Google Scholar 

  20. M. Pfeiffer, A. Beyer, B. Plonnigs, A. Nollau, T. Fritz, K. Leo, D. Schlettwein, S. Hiller, D. Wohrle, Sol. Energy Mater. Sol. Cells 63, 83 (2000)

    Article  Google Scholar 

  21. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  22. S.R. Elliott, Philos. Mag. 36, 1291 (1977)

    Article  ADS  Google Scholar 

  23. H.M. Zeyada, M.M. El-Nahass, Appl. Surf. Sci. 254, 1852 (2008)

    Article  ADS  Google Scholar 

  24. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  ADS  Google Scholar 

  25. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  26. A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981)

    Article  ADS  Google Scholar 

  27. S. Senthilarasu, R. Sathyamoorthy, J.A. Ascencio, L. Soo-Hyoung, Y.B. Hahm, J. Appl. Phys. 101, 034111 (2007)

    Article  ADS  Google Scholar 

  28. K. Kudo, D.X. Wang, M. Iizuka, S. Kuniyoshi, K. Tanaka, Thin Solid Films 331, 51 (1998)

    Article  ADS  Google Scholar 

  29. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solid (Dover, New York, 1967)

    Google Scholar 

  30. M. El-Shabasy, A.S. Riad, Physica B 222, 153 (1996)

    Article  ADS  Google Scholar 

  31. K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, Y.B. Saddeek, Curr. Appl. Phys. 11, 55 (2011)

    Article  ADS  Google Scholar 

  32. W. Cao, R. Gerhardt, Solid State Ion. 42, 213 (1990)

    Article  Google Scholar 

  33. C.J. Bowler, R.D. Gould, J. Vac. Sci. Technol. A 5, 114 (1987)

    Article  ADS  Google Scholar 

  34. A.M. Saleh, S.M. Hraibat, R.M.-L. Kitaneh, M.M. Abu-Samreh, S.M. Musameh, J. Semicond. 33(8), 082002-1 (2012)

    Article  ADS  Google Scholar 

  35. E.A.I. Saad, J. Optoelectron. Adv. Mater. 7, 3127 (2005)

    Google Scholar 

  36. M.A.L. Nobre, S. Lanfredi, Mater. Lett. 47, 362 (2001)

    Article  Google Scholar 

  37. D.L. Greenway, G. Harbeke, Optical Properties and Band Structure of Semiconductors (Pergamon, New York, 1968)

    Google Scholar 

  38. S. Vinoth Rathan, G. Govindaraj, Solid State Sci. 12, 730 (2010)

    Article  ADS  Google Scholar 

  39. A.K. Jonscher, J. Mater. Sci. 13, 553 (1978)

    Article  ADS  Google Scholar 

  40. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  41. L. Sidebottom, B. Roling, K. Funke, Phys. Rev. B 63, 024301 (2000)

    Article  ADS  Google Scholar 

  42. H.S. Nalwa, P. Vazudevan, J. Mater. Sci. Lett. 2, 22 (1983)

    Article  Google Scholar 

  43. S. Kumar, M. Husain, M. Zulfequar, Physica B 387, 400 (2007)

    Article  ADS  Google Scholar 

  44. M.H. Shaaban, A.A. Ali, M.K. El-Nimr, Mater. Chem. Phys. 96, 433 (2006)

    Article  Google Scholar 

  45. G.B. Devidas, T. Sankarappa, M.P. Kumar, S. Kumar, J. Mater. Sci. 43, 4856 (2008)

    Article  ADS  Google Scholar 

  46. G.A. Khan, C.A. Hogarth, J. Mater. Sci. 26, 17 (1991)

    Article  ADS  Google Scholar 

  47. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  ADS  Google Scholar 

  48. E.M. El-Menyawy, H.M. Zeyada, M.M. El-Nahass, Solid State Sci. 12, 2182 (2010)

    Article  ADS  Google Scholar 

  49. R.L. VanEwyk, A.V. Chadwich, J.D. Wright, J. Chem. Soc. Faraday Trans. I 77, 73 (1981)

    Article  Google Scholar 

  50. H.M. Zeyada, M.M. El-Nahass, I.K. El-Zawawi, E.M. El-Menyawy, J. Phys. Chem. Solids 71, 867 (2010)

    Article  ADS  Google Scholar 

  51. A.K. Ray, S.M. Tracy, A.K. Hassan, IEE Proc. Sci. Meas. Technol. 146(4), 205 (1999)

    Article  Google Scholar 

  52. A.A. Ali, M.H. Shaaban, Solid State Sci. 12, 2148 (2010)

    Article  ADS  Google Scholar 

  53. J. Blat, Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968)

    Google Scholar 

  54. R. Suresh Kumar, K. Hariharan, Mater. Chem. Phys. 60, 28 (1999)

    Article  Google Scholar 

  55. P. Bergo, W.M. Pontuschka, J.M. Prison, C.C. Motta, J.R. Martinelli, J. Non-Cryst. Solids 348, 84 (2004)

    Article  ADS  Google Scholar 

  56. M. El-Nahass, A.F. El-Deeb, F. Abd-El-Salam, Org. Electron. 7, 261 (2006)

    Article  Google Scholar 

  57. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P.J. Houenou, J. Non-Cryst. Solids 45, 57 (1981)

    Article  ADS  Google Scholar 

  58. A.E. Bekheet, Physica B 403, 4342 (2008)

    Article  ADS  Google Scholar 

  59. A. Hunt, J. Non-Cryst. Solids 144, 21 (1992)

    Article  ADS  Google Scholar 

  60. A. Hunt, J. Non-Cryst. Solids 160, 183 (1993)

    Article  ADS  Google Scholar 

  61. A.S. Riad, M.T. Korayem, T.G. Abdel-Malik, Physica B 254, 140 (1999)

    Article  ADS  Google Scholar 

  62. P.V. Rao, T. Satyanarayana, M.S. Reddy, Y. Ganadhi, N. Veeraiah, Physica B 403, 3751 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitaneh, R.ML., Abu-Samreh, M.M., Musameh, S.M. et al. Dielectric characterization of semiconducting ZnPc films sandwiched between Gold or Aluminum electrodes. Appl. Phys. A 114, 1267–1275 (2014). https://doi.org/10.1007/s00339-013-7910-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7910-1

Keywords

Navigation